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Abstract

We present a variational inference scheme to learn a model that solves the Schrödinger
Bridge Problem (SBP). In contrast to previous work, our approach is solver-agnostic and
guarantees solutions that respect the prior beyond the first fitting iteration. Having this
solution allows us to generate new samples from one of the distributions by first sampling
from the other one and then solving the dynamical system. We show that our model is
able to learn the transformation between the Gaussian distribution and arbitrary data, as
well as learning dynamics that follow a potential function.

1. Introduction and motivation

The Schrödinger bridge problem (SBP) (Schrödinger, 1931, 1933) seeks to find a transfor-
mation between two probability distributions. It has both a static version, where a direct
transformation is obtained, and a dynamic version, where the flows between the two distri-
butions are learned. Recent works (De Bortoli et al., 2021; Vargas et al., 2021; Chen et al.,
2021) have tackled this dynamic scenario.

Finding these flows can be done using the Iterative Proportional Fitting Procedure
(IPFP) (Fortet, 1940; Kullback, 1968; Cramer, 2000), that iteratively optimizes each process
so that the Kullback-Leibler divergence (DKL) between the two processes is minimized at
each iteration. One way to do this is to update the joint density of the problem using the
potentials of the dual representation of the SBP. Approximating these coupled potentials
requires estimating an integral involving them, which in higher dimensional problems can
be difficult.

The thorough approach of De Bortoli et al. (2021) uses another representation that
can more easily be applied where samples of both boundary distributions are available.
This tackles the Schrödinger bridge as an iterative mean-matching procedure, where at
each iteration, the mean of the reversed forwards process is matched with the mean of
the backward process. This requires assuming that at each time-step, the change in the
state is small, so that the Euler-Maruyama discretization of the process is valid. Using a
small enough time-step ensures this. However, if the time-step is not small enough, it can
lead to stability issues. Additionally, while this model is regularized using a prior diffusion
process, this regularization is only directly applied in the first iteration. This can lead to
the learned dynamics differing wildly from the prior, especially when they are represented
by unbounded functions (such as neural networks).

Our model seeks to address these issues by learning the dynamics of the two processes in
a way that is independent of the solver used, and so better solvers become available, while
also maintaining the regularization in every iteration.
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2. Solving the SBP with shooting variables
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Figure 1: Diagram of the model, when optimizing the forward process. Firstly, a solution to the
backward process is obtained using the solver (blue). Then fsigN−1

i=0 are sampled from the variational
distribution (black) which are then solved forwards one step using the forward process to obtain
fxigNi=1 (red). Finally, the parameters of the variational distribution and the forward process are
optimized so that both si and xi match their corresponding yi.

Writing the two boundary distributions as p0 and pT , we define the process that trans-
forms the first into the second as the forward process

dyt = fk(yt)dt+ γtdBt , (1)

where k is the IPFP iteration, fk : Rd ! Rd is the drift function, Bt is the Brownian
process and γt is the diffusion scale. The backward process then transforms pT into p0,
with drift function gk : Rd ! Rd and same diffusion scales for the same values of t.

We consider the time interval [0, T ] divided into N sub-intervals ∆ti, for i 2 f0, . . . , N�
1g. For the following derivation, we assume that we have samples fyigNi=0, obtained by
solving the backward SDE with an arbitrary solver and then reversing them time-wise (the
derivation is equivalent if we have samples from the forward SDE). The probability density
of these reversed solutions is then

p(fyigNi=0) = p(y0)

NY
i=1

p(yijyi�1) . (2)

Taking inspiration from Hegde et al. (2021), we now introduce the shooting variables
fsigN�1i=0 and fxigNi=1with transition probabilities p(xijsi�1) such that the probability den-
sity in Equation (2) becomes

p(fyigNi=0) = p(y0)

NY
i=1

Z
p(yijxi)p(xijsi�1)p(si�1jyi�1) dxi dsi�1 . (3)

We now introduce the variational distribution q(si�1jyi�1) and the “variational” tran-
sition density q(xijsi�1), derived from the forward process, to obtain a lower bound on the
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