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Abstract

We propose a new framework for imposing
monotonicity constraints in a Bayesian non-
parametric setting based on numerical solu-
tions of stochastic differential equations. We
derive a nonparametric model of monotonic
functions that allows for interpretable priors
and principled quantification of hierarchical
uncertainty. We demonstrate the efficacy of
the proposed model by providing competitive
results to other probabilistic monotonic mod-
els on a number of benchmark functions. In
addition, we consider the utility of a mono-
tonic random process as a part of a hierarchi-
cal probabilistic model; we examine the task of
temporal alignment of time-series data where
it is beneficial to use a monotonic random
process in order to preserve the uncertainty
in the temporal warpings.

1 INTRODUCTION

Monotonic regression is a task of inferring the
relationship between a dependent variable y and
an independent variable x when it is known that
the relationship y = f(x) is monotonic. Monotonic
functions (and monotonic random processes) have
previously been studied in areas as diverse as physical
sciences for estimating the temperature of a cannon
barrel over time [Lavine and Mockus, 1995], marine
biology for surveying of fauna on the seabed of
the Great Barrier Reef [Hall and Huang, 2001],
geology for chronology of sediment sam-
ples [Haslett and Parnell, 2008], public health for re-
lating obesity and body fat [Dette and Scheder, 2006],
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sociology for relating education, work experience and
salary [Dette and Scheder, 2006], design of computer
networking systems [Golchi et al., 2015], economics for
estimating personal income [Canini et al., 2016],
insurance for predicting mortality rates
[Durot and Lopuhaä, 2018], biology of establish-
ing the diagnostic value of bio-markers for Alzheimer’s
disease and for trajectory estimation in brain
imaging [Lorenzi et al., 2019, Nader et al., 2019], me-
teorology for estimation of wind-induced under-catch
of winter precipitation [Kim et al., 2018] and others.

Monotonicity also appears in the more general
context of hierarchical models where we want to
transform a (simple and typically stationary) input
distribution to a (complicated and non-stationary)
data distribution. More specifically, monotonicity
constraints have been used in hierarchical models with
warped inputs, for example, in Bayesian optimisation
of non-stationary functions [Snoek et al., 2014] and in
mixed effects models for temporal warps of time-series
data [Kaiser et al., 2018, Kazlauskaite et al., 2019,
Raket et al., 2016].

Extensive study by the statistics [Ramsay, 1988,
Sill and Abu-Mostafa, 1997] and machine learn-
ing communities [Riihimäki and Vehtari, 2010,
Andersen et al., 2018] has resulted in a variety of
frameworks. While many traditional approaches use
constrained parametric splines, they are not sufficiently
expressive and, typically, do not include prior beliefs
about the characteristics of the underlying function
(such as smoothness). Consequently, many contempo-
rary methods consider monotonicity in the context of
continuous random processes, mostly based on Gaus-
sian processes (GPs) [Rasmussen and Williams, 2005].
As a nonparametric Bayesian model, a GP is an
attractive foundation on which to build flexible and
theoretically sound models with well-calibrated esti-
mates of uncertainty and automatic complexity control.
However, imposing monotonicity constraints on a GP
has proven to be problematic [Lin and Dunson, 2014,
Riihimäki and Vehtari, 2010] as it requires both
formulating a prior that is monotonic as well as
constraining the (predictive) posterior to be monotonic.
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This is particularly challenging as monotonicity is a
global property, implying that the function values are
correlated for all inputs, irrespective of the lengthscale
of the covariance [Andersen et al., 2018].

In this work we propose a novel nonparametric
Bayesian model of monotonic functions that is
based on the recent work on differential equations
(DEs). At the heart of such models is the idea
of approximating the derivatives of a function
rather than studying the function directly. DE
models have gained a lot of popularity recently and
they have been successfully applied in conjunction
with both neural networks [Chen et al., 2018] and
GPs [Heinonen et al., 2018, Yildiz et al., 2018a,
Yildiz et al., 2018b]. We consider a recently
proposed framework, called differential GP
flows [Hegde et al., 2019], that performs classifi-
cation and regression by learning a stochastic
differential equation (SDE) transformation of the input
space. It admits an expressive yet computationally
convenient parametrisation using GPs.

Utilising the uniqueness theorem for the solutions of
SDEs [Øksendal, 1992], we formulate a novel stochastic
random process that is guaranteed to be monotonic.
We show that, unlike some of the previous work on
monotonic random processes, the proposed approach
is guaranteed to lead to monotonic samples from the
model (defined as a flow field), and it performs com-
petitively on a set of regression benchmarks.

Furthermore, we study an illustrative example of a
hierarchical, two-layer model where the first layer cor-
responds to a smooth monotonic warping of time and
the second layer corresponds to a sequence of time-
series observations. The overall goal in such a prob-
lem is to learn the warpings of the inputs such that
the unwarped versions of the sequences are tempo-
rally aligned. While such models typically rely on
parametric transformations for the temporal warp-
ings [Kazlauskaite et al., 2019], we show how the es-
timation of uncertainty leads to a model that is more
informative and more interpretable than the previous
approach. To achieve this, we further make use of
the recent advances in variational inference for deep
GPs [Ustyuzhaninov et al., 2019] to capture the com-
positional uncertainty present in the hierarchical model.

2 RELATED WORK

Splines Many classical approaches to monotonic
regression rely on spline smoothing: given a ba-
sis of monotone spline functions, the underlying
function is approximated using a non-negative
linear combination of these basis functions and the
monotonicity constraints are satisfied in the entire

domain [Wahba, 1978] by construction. For example,
Ramsey [Ramsay, 1998] considers a family of functions
defined by the differential equation D2f = ωDf which
contains the strictly monotone twice differentiable func-
tions, and approximates ω using a basis of M-splines
and I-splines. Shively et al. [Shively et al., 2009]
consider a finite approximation using quadratic splines
and a set of constraints on the coefficients that ensure
isotonicity at the interpolation knots. The use of
piecewise linear splines was explored by Haslett and
Parnell [Haslett and Parnell, 2008] who use additive
i.i.d. gamma increments and a Poisson process to
locate the interpolation knots; this leads to a process
with a random number of piecewise linear segments of
random length, both of which are marginalised analyt-
ically. Further examples of spline based approaches
rely on cubic splines [Wolberg and Alfy, 2002],
mixtures of cumulative distribution func-
tions [Bornkamp and Ickstadt, 2009] and an ap-
proximation of the unknown regression function using
Bernstein polynomials [Curtis and Ghosh, 2011].

Gaussian process A GP is a stochastic process
which is fully specified by its mean function, µ(x), and
its covariance function, k(x,x′), such that any finite
set of random variables have a joint Gaussian distri-
bution [Rasmussen and Williams, 2005]. GPs provide
a robust method for modeling non-linear functions in
a Bayesian nonparametric framework; ordinarily one
considers a GP prior over the function and combines
it with a suitable likelihood to derive a posterior esti-
mate for the function given data. The nonparametric
nature of the GP means that, unlike the parametric
counterparts, it adapts to the complexity of the data.

Monotonic Gaussian processes A common ap-
proach is to ensure that the monotonicity con-
straints are satisfied at a finite number of
input points. For example, Da Veiga and
Marrel [Da Veiga and Marrel, 2012] use a trun-
cated multi-normal distribution and an approxima-
tion of conditional expectations at discrete loca-
tions, while Maatouk [Maatouk, 2017] and Lopez-
Lopera et al. [Lopez-Lopera et al., 2019] proposed
finite-dimensional approximations based on determin-
istic basis functions evaluated at a set of knots.
Another popular approach proposed by Riihimäki
and Vehtari [Riihimäki and Vehtari, 2010] is based
on including the derivatives information at a num-
ber of input locations by forcing the derivative pro-
cess to be positive at these locations. Extensions to
this approach include both adapting to new applica-
tion domains [Golchi et al., 2015, Lorenzi et al., 2019,
Siivola et al., 2016] and proposing new inference
schemes [Golchi et al., 2015]. However, these ap-
proaches do not guarantee monotonicity as they impose
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constraints at a finite number of points only. Lin and
Dunson [Lin and Dunson, 2014] propose another GP
based approach that relies on projecting sample paths
from a GP to the space of monotone functions using
pooled adjacent violators algorithm which does not
impose smoothness. Furthermore, the projection op-
eration complicates the inference of the parameters
of the GP and produces distorted credible intervals.
Lenk and Choi [Lenk and Choi, 2017] design shape re-
stricted functions by enforcing that the derivatives of
the functions are squared Gaussian processes and ap-
proximating the GP using a series expansion with the
Karhunen-Loève representation and numerical integra-
tion. Andersen et al. [Andersen et al., 2018] follow a
similar approach, in which the derivatives of the func-
tions are assumed to be compositions of a GP and a
non-negative function; in the following we refer to this
method as transformed GP.

3 BACKGROUND

We now discuss the SDE framework we build upon for
our monotonic random process. Any random process
can be defined through its finite-dimensional distri-
bution [Øksendal, 1992]. This implies that modelling
the observations {f(xn)}Nn=1 with trajectories of such
a process requires their definition through the finite-
dimensional joint distributions p(f(x1), . . . , f(xN )).
Constraining the functions to be monotonic necessi-
tates choosing a family of joint probability distributions
that satisfies the monotonicity constraint:

p(f(x1), . . . , f(xN )) = 0,

unless f(x1) ≤ . . . ≤ f(xN ).
(MC)

This could be achieved by truncating a standard joint
distribution (e.g. Gaussian) but inference in such mod-
els is computationally challenging [Maatouk, 2017].
Another approach is to define a random process to
have monotone trajectories by construction (e.g. Com-
pound Poisson process) but this often requires making
simplifying assumptions on the trajectories (and there-
fore on {f(x)}). In contrast, we use solutions of SDEs
to define a random process with monotonic trajecto-
ries by construction while avoiding strong simplifying
assumptions.

3.1 Gaussian process flows

SDE solutions Our model builds on the general
framework for modelling functions as SDE solutions
introduced in [Hegde et al., 2019]. Consider the follow-
ing SDE:

dS(t, ω;x) = µ (S(t, ω;x), t) dt

+
√
σ (S(t, ω;x), t) dW(t, ω)

(1)

where W(t, ω) is the Wiener process. The solution of
this SDE is a stochastic process S(t, ω;x) which is a
function of three arguments: the time t, the initial
value x at time t = 0, and the element ω ∈ Ω of the
underlying sample space Ω.1

For a fixed time t = T , the corresponding SDE solution
S(T, ω;x) is a random variable that depends on the
initial condition x. Therefore, there exists a mapping
of an arbitrary initial condition to this solution at time
T : x 7→ S(T, ω;x) and the distribution of the SDE
solutions induces a distribution over such mappings
(similar to GPs, for example). The family of such dis-
tributions is parametrised by functions µ (S(t, ω;x), t)
(drift) and σ (S(t, ω;x), t) (diffusion), which are de-
fined in [Hegde et al., 2019] using a sparse Gaussian
process [Titsias, 2009].

Flow GP Consider a zero-mean, single-output GP
g ∼ GP(0, k(·, ·)), which is a function of two arguments:
a space variable s and time t. We specify the GP via a
set ofM inducing outputsU = {Um}Mm=1, Um ∈ R, cor-
responding to inducing input locations Z = {zm}Mm=1,
zm ∈ ({s}×{t}) = R2, similarly to [Titsias, 2009]. The
predictive posterior distribution of such a GP evaluated
at a spatio-temporal point (s, t) is as follows:

p(g(s, t) | U,Z) ∼ N (µ̃(s, t), Σ̃(s, t))

µ̃(s, t) = K(s,t),z K
−1
zz U,

Σ̃(x, t) = k((s, t), (s, t))−K(s,t),z K
−1
zz Kz,(s,t),

(2)

where the covariance matrix Kab := k(a,b). We
define the SDE drift and diffusion functions to be
µ(S(t, ω;x), t) := µ̃(S(t, ω;x), t) and σ(S(t, ω;x), t) :=

Σ̃(S(t, ω;x), t) implying that (1) is completely defined
by the GP g and its set of inducing points {U,Z}.
Similarly to [Hegde et al., 2019], the joint density of a
single path then is (neglecting Z for clarity):

p(y, S(T, ω;x), g,U) = p(y | S(T, ω;x))︸ ︷︷ ︸
likelihood

p (S(T, ω;x) | g)︸ ︷︷ ︸
SDE

p (g |U) p (U)︸ ︷︷ ︸
GP prior of g(s,t)

.
(3)

Inference Inferring U is intractable in closed form,
hence the posterior of U is approximated by a varia-
tional distribution q(U) ∼ N (m,S), the parameters of
which (and the inducing inputs Z) are optimised by
maximising the marginal likelihood lower bound L:

log p(D) ≥ L := −KL[ q(U) || p(U) ]

+Eq(U)Ep(S(T,ω;x) |U)[ log p (y |S(T, ω;x)) ].
(4)

1Typically, the dependencies on x and ω are omitted,
denoting the stochastic process as St, however, these depen-
dencies are crucial for our construction of the monotonic
flow model, thus we explicitly keep them in the notation.
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The expectation Ep(S(T,ω;x) |U) is approximated by
sampling the numerical approximations of the SDE
solutions. This is particularly convenient to do with
µ (S(t, ω;x), t) and σ (S(t, ω;x), t) defined as param-
eters of a GP posterior as sampling such an SDE
solution only requires generating samples from the
posterior of the GP given the inducing points U
(see [Hegde et al., 2019] for details). The first term
in (4) is a KL divergence between two Gaussian distri-
butions available in closed form.

4 MONOTONIC GAUSSIAN
PROCESS FLOW

We now describe our proposed random process
with monotonic trajectories. Assuming N one-
dimensional initial conditions (denoted jointly as
x = (x1, . . . , xN ) ∈ RN ), we use the SDE solution map-
ping x 7→ S(T, ω;x) := (S(T, ω;x1), . . . , S(T, ω;xN ))
as our model of monotonic function. We begin with an
intuitive discussion of why S(T, ω;x) is a monotonic
function of x using a fluid flow field analogy.
1. A general ordinary smooth DE du(t) = φ(u)dt may

be thought of as a fluid flow field. Its solutions
u(t, x1), . . . , u(t, xn) corresponding to the initial val-
ues x1, . . . , xn are trajectories or streams of particles
in this field starting at these initial values. A funda-
mental property of such flows is that one can never
cross the streams of the flow field.2 Therefore, if
particles are evolved simultaneously under a flow
field their ordering cannot be permuted; this gives
rise to a monotonicity constraint.

2. A stochastic differential equation, however, intro-
duces random perturbations into the flow field so
particles evolving independently could jump across
flow lines and change their ordering. However, a
single, coherent draw from the SDE (corresponding
to an individual realisation of the paths W(·, ω))
will always produce a valid flow field (the flow field
will simply change between draws). Thus, particles
evolving jointly under a single draw will still evolve
under a valid flow field and therefore never permute.

4.1 SDE solutions are monotonic functions of
initial values

The joint distribution p (S(T, ω;x1), . . . , S(T, ω;xN ))
of solutions of the SDE in (1) with initial values
x1 ≤ . . . ≤ xN satisfies (MC).

This follows from a general result that SDE solutions
S(t, ω;x) are unique and continuous under certain reg-
ularity assumptions for any initial value x (see, for

2Also an important safety tip to avoid total protonic
reversal [Spengler, 1984].

example, Theorem 5.2.1 in [Øksendal, 1992]). Specif-
ically, a random variable S(t, ω;x) is a unique and
continuous function of t for any element of the sam-
ple space ω ∈ Ω. Using this result we conclude that
if we have two initial conditions x and x′ such that
x ≤ x′, the corresponding solutions at some time T
also obey this ordering, i.e. S(T, ω;x) ≤ S(T, ω;x′) for
ω ∈ Ω. Indeed, were that not the case, the continuity
of S(t, ω;x) as a function of t implies that there exists
some 0 ≤ tc ≤ T such that S(tc, ω;x) = S(tc, ω;x′)
(i.e. the trajectories corresponding to initial values x
and x′ cross), resulting in two different solutions of
the SDE for the initial condition xc := S(tc, ω;x) =
S(tc, ω;x′) (namely S(T − tc, ω;xc) = S(T, ω;x) and
S(T − tc, ω;xc) = S(T, ω;x′)), violating the uniqueness
result.

The above argument assumes a fixed flow field (defined
by the drift and the diffusion functions) and a fixed
Wiener realisation (corresponding to W(·, ω)); it im-
plies that individual solutions (i.e. solutions to a single
draw) of the SDEs at a fixed time T , S(T, ω;x), are
monotonic functions of the initial conditions, and hence
define a random process with monotonic trajectories.
The actual prior distribution of such trajectories de-
pends on the exact form of the functions µ (S(t, ω;x), t)
and σ (S(t, ω;x), t) in (1) (e.g. if σ(S(t, ω;x), t) = 0,
the SDE is an ordinary DE and S(T, ω;x) is a deter-
ministic function of x independent of ω, meaning that
the prior distribution consists of a single monotonic
function). Prior distributions over µ (S(t, ω;x), t) and
σ (S(t, ω;x), t) thus induces priors over the monotonic
functions S(T, ω;x), and inference in this model con-
sists of computing the posterior distribution of these
functions conditioned on the observed noisy sample
from a monotonic function. For details of the numerical
solution of the SDE, see supplementary material A.1.

4.2 Notable differences to Hedge et al.

1. In [Hegde et al., 2019], a regular GP is placed
on top of the SDE solutions S(T, ω;x), so that
p (y |S(T, ω;x)) is a GP with a Gaussian likeli-
hood in (4). In contrast, since we are modelling
monotonic functions and S(T, ω;x) are monotonic
functions of x, we define p (Y |S(T, ω;x)) to be
directly the likelihood

p (y |S(T, ω;x)) = N (y |S(T, ω;x), σ2I), (5)

where y is a vector of observations sampled from
an underlying unknown monotonic function f(x).

2. The argument in this section assumes a fixed flow
field (defined by the drift and the diffusion func-
tions) and a fixed Wiener realisation (denoted by
ω). Thus, a critical difference in our inference



Ustyuzhaninov, Kazlauskaite, Ek, Campbell

procedure is that at every iteration of the numeri-
cal SDE solver, we jointly sample the increments
∆x in the flow field using (2). This ensures that
they are taken from the same instantaneous real-
isation of the stochastic flow field and hence the
monotonicity constraint is satisfied.

5 EXPERIMENTS

First, we test the monotonic flow model on the task of
estimating monotonic curves from noisy observations
(in high and low data regimes) before investigating the
quantification of uncertainty.

Regression We use a set of 6 benchmark func-
tions from previous studies [Lin and Dunson, 2014,
Maatouk, 2017, Shively et al., 2009]. Three examples
of the functions are shown in Fig. 1; the exact equations
are in the Supplement A.5. The training data is gener-
ated by evaluating these functions at N equally spaced
points and adding i.i.d. Gaussian noise εn ∼ N (0, 1).
We note that many real-life datasets that benefit
from monotonicity constraints have similar trends and
high levels of noise (e.g. [Haslett and Parnell, 2008,
Curtis and Ghosh, 2011, Kim et al., 2018]). Following
the literature, we used the root-mean-square-error
(RMSE) to evaluate performance.

100 data points Table 1 in the Supplement A.8
provides the results obtained by fitting different mono-
tonic models to data sets containing N = 100 points.
As baselines we include: GPs with monotonicity in-
formation [Riihimäki and Vehtari, 2010]3, transformed
GPs [Andersen et al., 2018]4, and other results re-
ported in the literature. We report the RMSE means
and the SD from 20 trial runs with different random
noise samples and show example fits in the bottom
row of Fig. 1. This figure contains the means of the
predicted curves from 10 trials with the best param-
eter values (each trial contains a different sample of
standard Gaussian random noise). We plot samples
as opposed to the mean and the SD as, due to the
monotonicity constraint, samples are more informa-
tive than sample statistics. The parameter values we
cross-validated over are detailed in the Supplement A.6.

Overall, our method performs very competitively,
achieving the best results on 3 functions and being
within a standard deviation of the best result on all
others. We note that the training data contains a lot of
observational noise (see Fig. 1), thus using prior mono-
tonicity assumptions significantly improves results over
a regular GP.

3Implementation available from https://research.cs.
aalto.fi/pml/software/gpstuff/.

4Implementation provided in personal communications.

15 data points In Table 2 in the Supplement A.8
and Fig. 1 (top row) we provide a comparison of the
flow and the transformed GP in a setting when only
N = 15 data points are available. Our fully nonpara-
metric model is able to recover the structure in the
data significantly better than the Transformed GP
which usually reverts to a nearly linear fit on all func-
tions. This might be explained by the fact that the
Transformed GP is a parametric approximation of a
monotonic GP, and the more parameters included, the
larger the variety of the functions it can model. How-
ever, estimating a large (w.r.t. dataset size) number of
parameters is challenging given a small set of noisy ob-
servations. The monotonic flow tends to underestimate
the value of the function on the left side of the domain
and overestimate the value on the right. The mean of
our prior of the monotonic flow with a stationary flow
GP kernel is an identity function, so given a small set
of noisy observations, the predictive posterior mean
quickly reverts to the prior distribution near the edges
of the data interval.

Uncertainty quantification in monotonic ran-
dom processes In standard (non-monotonic) regres-
sion, GPs are used as the gold standard for the quan-
tification of uncertainty [Foong et al., 2019]. However,
directly comparing the confidence intervals of a mono-
tonic random process to a standard GP is misleading
due to the additional constraints of monotonicity which
lead to tighter confidence intervals as fewer explana-
tions (functions) are compatible with the observed data.
Fig. A2 illustrates the shrinking of the confidence in-
tervals for monotonic random processes in comparison
to a standard (unconstrained) GP. As a baseline, we
fit a standard GP (Fig. A2a) and consider only those
samples from the posterior which are monotonic increas-
ing in the domain in which we perform extrapolation
([−5, 5]); these samples along with their mean and 2 SD
away from the mean are shown in Fig. A2b5. The GP
with monotonicity information (Fig. A2c) is not able to
guarantee that the samples are monotonic, especially
in parts of the domain away from the data, while the
transformed GP (Fig. A2d) tends to underestimate the
uncertainty, potentially due to the Dirichlet conditions
imposed on the boundaries of the domain. Meanwhile,
the uncertainty estimates of our proposed monotonic
flow are comparable to the baseline (i.e. the monotonic
samples from a standard GP) during extrapolation and
samples from the flow are guaranteed monotone.

An alternative visualisation of the flow model involves

5We note that plotting the error bars using a Gaussian
density may be misleading in monotonic regression as the
samples from such process may not be symmetric around
the mean, especially when the data are nearly constant,
which can be seen by looking at the samples.

https://research.cs.aalto.fi/pml/software/gpstuff/
https://research.cs.aalto.fi/pml/software/gpstuff/


Monotonic Gaussian Process Flows

2 0 2 4 6 8 10 12
2

0

2

4

6 Transformed GP
True function
Flow
Example of data

(a) Linear, 15 data points
2 0 2 4 6 8 10 12

2

0

2

4

6 Transformed GP
True function
Flow
Example of data

(b) Exponential, 15 data points
2 0 2 4 6 8 10 12

2

0

2

4

6
Transformed GP
True function
Flow
Example of data

(c) Logistic, 15 data points

2 0 2 4 6 8 10 12
2

1

0

1

2

3

4

5

6 Transformed GP
True function
Flow
Example of data

(d) Linear, 100 data points
2 0 2 4 6 8 10 12

2

0

2

4

6

8 Transformed GP
True function
Flow
Example of data

(e) Exponential, 100 data points
2 0 2 4 6 8 10 12

2

0

2

4

6

8

10 Transformed GP
True function
Flow
Example of data

(f) Logistic, 100 data points

Figure 1: Mean fits for 10 trials with different random noise as estimated by the flow and the transformed
GP [Andersen et al., 2018] (the noise samples are identical for both methods; we plot the data from one trial).

looking at the streamlines of the input values as a
function of time (see Fig. 2). The streamlines may be
visualised as one coherent draw from the flow (shown
at the top of Fig. 2), or as independent samples at a
given value of the inputs (shown in the middle figures of
Fig. 2). The latter also help visualise the uncertainty in
the model as these samples show the range of possible
outputs S(T, ω;x) for a given input location x.

The mean and variance of the inducing points in the
flow GP depend on their number M as follows: given
few inducing points, they are typically optimised to be
located close to the observations so that the resulting
model fits the observations well (with low estimated ob-
servational noise). Meanwhile, given a large number of
inducing points, some are used to fit the data well while
others are placed in regions with no observations (see,
for example, the regions in between the data ([−2, 2])
in Fig. 2b) and optimised to have higher variance S in
those regions. We note that the uncertainty estimates
in the monotonic flow model do not depend much on
the number of inducing points: the estimates are nearly
identical for M > 5 while for this data M = 5 may
not be enough to explain the data well, hence the ob-
servational noise gets overestimated, also resulting in
higher variance in extrapolation. Fig. 3a shows how the
uncertainty estimates for this data set depend on the
number of inducing points. Similarly, Fig. 3b details
the dependence on the flow time T [Hegde et al., 2019];
longer flow time (T ≥ 10) results in more extreme warp-
ings and thus higher uncertainty at the observations
with overestimated observational noise.

6 ALIGNMENT APPLICATION

A monotonic constraint in the first layer is desirable
in mixed effects models where the first layer corre-
sponds to a warping of space or time that does not
allow permutations. We consider an application of the
monotonic random process as an integral part of a
model designed to align multiple temporal sequences
of observations. This problem is introduced in detail
in [Kazlauskaite et al., 2019] and here we provide a
short summary and the baseline model. We change
notation to match [Kazlauskaite et al., 2019]; for the
alignment application, g(·) refers to the monotonic func-
tion, specified using the monotonic Gaussian process
flow model, whereas f(·) is now an arbitrary function.

Assume we are given some time-series data with inputs
x ∈ RN and J output sequences {yj ∈ RN}Jj=1. We
know that there are multiple underlying functions that
generated this data, say K such functions, fk(·), and
the observed data were generated by warping the tem-
poral inputs to the true functions using a monotonic
warping function gj(x), such that:

yj = fk
(
gj(x)

)
+ εj . (6)

where εj ∼ N (0, β−1IN ) is observation noise. Then the
corresponding, latent, sequences that are not corrupted
by the temporal warp (i.e. the aligned versions of yj)
are fj := fk(x). The functions fj(·) are modelled jointly
using a GP and the joint conditional likelihood for each



Ustyuzhaninov, Kazlauskaite, Ek, Campbell

4 2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
Flow streamlines, M = 5

4 2 0 2 4 6

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e

Flow streamlines, M = 5

4 2 0 2 4
4

2

0

2

4

6

Flow, M = 5
Samples
Data points
2 SD

(a) Flow streamlines for 5
inducing points.
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(b) Flow streamlines for 100
inducing points.

Figure 2: A coherent sample (top) and a set of independent
samples at three chosen input locations (middle) from a
fitted flow (bottom). The circles (top figures) show the
location m of the inducing points and are scaled by their
(relative) variance S.

4 2 0 2 4
3

2

1

0

1

2

3

4

5
Flow, 2 SD (effect of M)

Data points
M = 5
M = 10
M = 20
M = 40
M = 60
M = 80
M = 100

(a) Flow comparison for
M = 5, 50, 100.

4 2 0 2 4

2

0

2

4

6

Flow, 2 SD (effect of T)
Data points
SD, T = 1
SD, T = 2
SD, T = 5
SD, T = 10

(b) Flow comparison for
T = 1, 2, 5, 10.

Figure 3: Effect of the number M of inducing points and the
total flow time T on the estimated uncertainty (coloured
regions correspond to 2 SD away from the mean of the
samples from the flow). Results for 5 random trials.

pair of sequences, yj and fj , is:

p

([
fj
yj

]∣∣∣∣gj ,x, θj)
∼ N

(
0,

[
kθj (x,x) kθj (x,gj)
kθj (gj ,x) kθj (gj ,gj) + β−1j

]) (7)

where gj := gj(x) are finite-dimensional realisations of
the warping function, and θj includes the parameters of
the GP that models function fj(·) and the parameters
of the warping function gj(·). The task is then to

Two groups
(to be found
automatically):

Unknown warps
Unknown
latent functions

Figure 4: Illustration of the alignment problem.
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Figure 5: The observations (bottom left) were generated
by applying warping functions (top left) to a sinc or cubic
function (K = 2). The point estimates in the alignment
model of [Kazlauskaite et al., 2019] will return one of the
two possible solutions (middle and right columns). One
solution (middle) aligns all the sequences into two groups
but uses more extreme warps (note the orange warp) while
the other solution (right) assigns the orange sequence to
a new cluster (and thus uses an identity warp for this
sequence). Both are plausible given our priors on the warps
gj(·) and the functions fj(·), hence a preferred model would
preserve the uncertainty about the warps and the cluster
assignments and capture the full range of possible solutions.

learn the latent functions fk(·) and the warps gj(·)
such that the versions of these function which are not
corrupted by the warp, fj , are aligned as well as possible.
Note that the number K of distinct functions fk(·) is
unknown must also be inferred from the data. This is
achieved by formulating an alignment objective that
pushes the uncorrupted sequences fj into K groups
where each group corresponds to one latent function
fk(·), and the sequences within each group are aligned
to each other. If the warps fully explain the differences
between the sequences within each group, then each
group contains a single sequence fk(·) (or, equivalently,
all the sequences within a group coincide); see Fig. 6.

Previously, [Kazlauskaite et al., 2019] proposed a prob-
abilistic alignment objective based on a GP latent vari-
able model (GP-LVM) [Lawrence, 2004] that aligns
sequences within groups. A GP-LVM is a generative
model that is often used as a dimensionality reduction
technique to uncovers the latent structure in the data
by constructing a low dimensional manifold, and using
independent GPs as mappings from a latent space to
an observed space. In a GP-LVM, GPs are taken to be
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Figure 6: Given noisy obser-
vations of warped sequences,
we compare the uncertainty
in the warps for the pro-
posed model (with and
without correlations) and
for [Kazlauskaite et al., 2019].
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independent across the features (columns) of the data
F = {fj}Jj=1 ∈ RJ×N , and the likelihood function is:

p(F | v) =
∏N
n=1N (F:,n | 0, k(v,v) + β̂−1IJ) (8)

where v = {vj}Jj=1 are the latent variables for each
sequence, the GP covariance is k(v,v) and β̂ is a noise
precision. Typically, a GP-LVM contains a prior on the
latent variables p(v) ∼ N (0, σ2

vIJ). This encourages
the latent variables to be placed close to the origin in
the latent space if the observed data can be explained
by a single cluster in a latent space; otherwise a mini-
mal number of clusters of v in the latent space will be
made under the Bayesian prior encouraging sparsity.
Furthermore, the stationary kernel in the GPs that
map from the latent space to the observed space de-
pend only on the distance between the latent location
vj , which means that the further each latent location is
from the others, the less correlated the corresponding
GP outputs fj . Specifically, this behaviour is controlled
by the kernel length-scale which allows to reduce corre-
lation between groups of sequences while maintaining
strong correlation among sequences within each group.

The two objectives of (7) and (8) are combined
to learn the GPs for fj(·), the warps gj(·) and
the number of underlying clusters K. The base-
line [Kazlauskaite et al., 2019] uses MAP estimates for
the fitting of the GPs in (7) and for the GP-LVM in (8).
This leads to point estimates of the warps gj and, con-
sequently, does not retain any information about the
uncertainty of cluster assignments. Fig. 5 illustrates
the limitation of using point estimates; the observed
data can be explained in multiple different ways which
cannot be uncovered using point estimates.

Uncertainty in monotonic warps We demon-
strate the ability of our monotonic random process
to capture the uncertainties in the warps and the clus-
ter assignments in the alignment model. In order to
preserve the compositional uncertainty in both the

warping functions gj(·) and the latent functions fj(·),
we introduce correlations between the variational dis-
tributions in the two layers, g(·) and f(·) using the in-
ference scheme detailed in [Ustyuzhaninov et al., 2019].
Fig. 6 illustrates this phenomenon, and compares the
uncertainty in the warps for the original point esti-
mate [Kazlauskaite et al., 2019], the monotonic flow
and the flow with correlations between the samples
from the warp and the function f . The flow captures a
range of different possible warpings that are consistent
with our prior (which favours solutions that are close
to an identity warp) and also fits and aligns the data
well. An additional example with bi-modal behaviour,
as in Fig. 5, is given in Fig. A1 in the Supplement.

7 CONCLUSION

We have proposed a novel nonparametric model of
monotonic functions based on a random process with
monotonic trajectories that confers improved perfor-
mance over the state-of-the-art as well as preferable
theoretical properties. Many real-life regression tasks
deal with functions that are known to be monotonic,
and explicitly imposing this constraint helps uncover
the structure in the data, especially when the obser-
vations are noisy or data are scarce. We have also
demonstrated that the proposed construction can be
used as part of a complex alignment model where
the uncertainty estimates provide a more informative
model and help uncover structures in the data that are
not captured by the existing models. More broadly,
with additional mid-hierarchy marginal information
or domain specific knowledge of compositional priors,
e.g. [Kaiser et al., 2018], hierarchical models may neces-
sitate a composition of (injective) monotonic mappings
for all but the output layer. This advocates the study
of monotonic functions, which can represent a wide
variety of transformations and hence serve as a general
purpose first layer in a hierarchical model, especially,
when the function is known to be non-stationary.



Ustyuzhaninov, Kazlauskaite, Ek, Campbell

Acknowledgments

This work has been supported by EPSRC CDE
(EP/L016540/1) and CAMERA (EP/M023281/1)
grants as well as the Royal Society. The authors are
grateful to Markus Kaiser and Garoe Dorta for their
insight and feedback on this work, and to Michael An-
dersen for sharing the implementation of Transformed
GPs. IK would like to thank the Frostbite Physics
team at EA.

References

[Abadi et al., 2015] Abadi, M., Agarwal, A., Barham,
P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Good-
fellow, I., Harp, A., Irving, G., Isard, M., Jia, Y.,
Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J.,
Mané, D., Monga, R., Moore, S., Murray, D., Olah,
C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I.,
Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Watten-
berg, M., Wicke, M., Yu, Y., and Zheng, X. (2015).
TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems. Software available from tensor-
flow.org.

[Andersen et al., 2018] Andersen, M. R., Siivola, E.,
Riutort-Mayol, G., and Vehtari, A. (2018). A non-
parametric probabilistic model for monotonic func-
tions. “All Of Bayesian Nonparametrics” Workshop
at NeurIPS.

[Bornkamp and Ickstadt, 2009] Bornkamp, B. and Ick-
stadt, K. (2009). Bayesian nonparametric estimation
of continuous monotone functions with applications
to dose-response analysis. Biometrics, 65(1):198–205.

[Canini et al., 2016] Canini, K., Cotter, A., Gupta, M.,
Milani Fard, M., and Pfeifer, J. (2016). Fast and
flexible monotonic functions with ensembles of lat-
tices. In Advances in Neural Information Processing
Systems (NeurIPS).

[Chen et al., 2018] Chen, R., Rubanova, Y., Betten-
court, J., and Duvenaud, D. (2018). Neural ordinary
differential equations. In Advances in Neural Infor-
mation Processing Systems (NeurIPS).

[Curtis and Ghosh, 2011] Curtis, S. M. and Ghosh,
S. K. (2011). A variable selection approach to mono-
tonic regression with bernstein polynomials. Journal
of Applied Statistics, 38(5):961–976.

[Da Veiga and Marrel, 2012] Da Veiga, S. and Marrel,
A. (2012). Gaussian process modeling with inequality
constraints. Annales de la Faculté des sciences de
Toulouse : Mathématiques, Ser. 6, 21(3):529–555.

[Dette and Scheder, 2006] Dette, H. and Scheder, R.
(2006). Strictly monotone and smooth nonparamet-
ric regression for two or more variables. Canadian
Journal of Statistics, 34(4):535–561.

[Durot and Lopuhaä, 2018] Durot, C. and Lopuhaä, H.
(2018). Limit theory in monotone function estimation.
Statistical Science, 33(4):547–567.

[Foong et al., 2019] Foong, A. Y. K., Burt, D. R.,
Li, Y., and Turner, R. E. (2019). Pathologies of
factorised gaussian and mc dropout posteriors in
bayesian neural networks.

[Golchi et al., 2015] Golchi, S., Bingham, D., Chip-
man, H., and Campbell, D. (2015). Monotone emu-
lation of computer experiments. SIAM-ASA Journal
on Uncertainty Quantification, 3(1):370–392.

[Hall and Huang, 2001] Hall, P. and Huang, L.-S.
(2001). Nonparametric kernel regression subject
to monotonicity constraints. Annals of Statistics,
29(3):624–647.

[Haslett and Parnell, 2008] Haslett, J. and Parnell, A.
(2008). A simple monotone process with application
to radiocarbon-dated depth chronologies. Journal of
the Royal Statistical Society. Series C, 57:399–418.

[Hegde et al., 2019] Hegde, P., Heinonen, M.,
Lähdesmäki, H., and Kaski, S. (2019). Deep
learning with differential gaussian process flows. In
International Conference on Artificial Intelligence
and Statistics (AISTATS).

[Heinonen et al., 2018] Heinonen, M., Yildiz, C., Man-
nerström, H., Intosalmi, J., and Lähdesmäki, H.
(2018). Learning unknown ode models with gaussian
processes. In International Conference on Machine
Learning (ICML).

[Kaiser et al., 2018] Kaiser, M., Otte, C., Runkler, T.,
and Ek, C. H. (2018). Bayesian alignments of warped
multi-output gaussian processes. In Advances in
Neural Information Processing Systems (NeurIPS).

[Kazlauskaite et al., 2019] Kazlauskaite, I., Ek, C. H.,
and Campbell, N. (2019). Gaussian process latent
variable alignment learning. In International Con-
ference on Artificial Intelligence and Statistics (AIS-
TATS). PMLR.

[Kim et al., 2018] Kim, D., Ryu, H., and Kim, Y.
(2018). Nonparametric bayesian modeling for mono-
tonicity in catch ratio. Communications in Statistics:
Simulation and Computation, 47(4):1056–1065.

[Lavine and Mockus, 1995] Lavine, M. and Mockus, A.
(1995). A nonparametric bayes method for isotonic
regression. Journal of Statistical Planning and In-
ference, 46(2):235–248.



Monotonic Gaussian Process Flows

[Lawrence, 2004] Lawrence, N. D. (2004). Gaussian
process latent variable models for visualisation of
high dimensional data. Advances in neural informa-
tion processing systems, 16(3):329–336.

[Lenk and Choi, 2017] Lenk, P. and Choi, T. (2017).
Bayesian analysis of shape-restricted functions using
gaussian process priors. Statistica Sinica, 27(1):43–
69.

[Lin and Dunson, 2014] Lin, L. and Dunson, D. (2014).
Bayesian monotone regression using gaussian process
projection. Biometrika, 101(2):303–317.

[Lopez-Lopera et al., 2019] Lopez-Lopera, A. F., John,
S., and Durrande, N. (2019). Gaussian process mod-
ulated cox processes under linear inequality con-
straints. In International Conference on Artificial
Intelligence and Statistics (AISTATS).

[Lorenzi et al., 2019] Lorenzi, M., Filippone, M.,
Frisoni, G., Alexander, D., and Ourselin, S. (2019).
Probabilistic disease progression modeling to charac-
terize diagnostic uncertainty: Application to staging
and prediction in alzheimer’s disease. NeuroImage,
190:56–68.

[Maatouk, 2017] Maatouk, H. (2017). Finite-
dimensional approximation of gaussian processes
with inequality constraints. arXiv:1706.02178.

[Nader et al., 2019] Nader, C. A., Ayache, N., Robert,
P., and Lorenzi, M. (2019). Monotonic gaussian
process for spatio-temporal trajectory separation in
brain imaging data. arXiv:1902.10952.

[Øksendal, 1992] Øksendal, B. (1992). Stochastic Dif-
ferential Equations (3rd Ed.): An Introduction with
Applications. Springer-Verlag.

[Raket et al., 2016] Raket, L. L., Grimme, B., Schöner,
G., Igel, C., and Markussen, B. (2016). Separating
timing, movement conditions and individual differ-
ences in the analysis of human movement. PLOS
Computational Biology, 12(9):1–27.

[Ramsay, 1988] Ramsay, J. (1988). Monotone regres-
sion splines in action. Statistical Science, 3(4):425–
441.

[Ramsay, 1998] Ramsay, J. (1998). Estimating smooth
monotone functions. Journal of the Royal Statistical
Society. Series B, 60(2):365–375.

[Rasmussen and Williams, 2005] Rasmussen, C. E.
and Williams, C. K. I. (2005). Gaussian Processes
for Machine Learning.

[Riihimäki and Vehtari, 2010] Riihimäki, J. and Ve-
htari, A. (2010). Gaussian processes with mono-
tonicity information. International Conference on
Artificial Intelligence and Statistics (AISTATS).

[Shively et al., 2009] Shively, T. S., Sager, T. W., and
Walker, S. G. (2009). A bayesian approach to non-
parametric monotone function estimation. Journal
of the Royal Statistical Society: Series B (Statistical
Methodology), 71(1):159–175.

[Siivola et al., 2016] Siivola, E., Piironen, J., and Ve-
htari, A. (2016). Automatic monotonicity detection
for gaussian processes. arXiv:1610.05440.

[Sill and Abu-Mostafa, 1997] Sill, J. and Abu-Mostafa,
Y. (1997). Monotonicity hints. In Advances in Neural
Information Processing Systems (NeurIPS).

[Snoek et al., 2014] Snoek, J., Swersky, K., Zemel, R.,
and Adams, R. (2014). Input warping for bayesian
optimization of non-stationary functions. In Inter-
national Conference on Machine Learning (ICML).

[Spengler, 1984] Spengler, E. (1984). Ghostbusters.

[Titsias, 2009] Titsias, M. (2009). Variational Learning
of Inducing Variables in Sparse Gaussian Processes.
In International Conference on Artificial Intelligence
and Statistics (AISTATS).

[Ustyuzhaninov et al., 2019] Ustyuzhaninov, I., Ka-
zlauskaite, I., Kaiser, M., Bodin, E., Campbell, N.
D. F., and Ek, C. H. (2019). Compositional uncer-
tainty in deep gaussian processes. In Bayesian Deep
Learning Workshop at NeurIPS.

[Wahba, 1978] Wahba, G. (1978). Improper priors,
spline smoothing and the problem of guarding
against model errors in regression. Journal of the
Royal Statistical Society. Series B, 49.

[Wolberg and Alfy, 2002] Wolberg, G. and Alfy, I.
(2002). An energy-minimization framework for mono-
tonic cubic spline interpolation. Journal of Compu-
tational and Applied Mathematics, 143(2):145–188.

[Yildiz et al., 2018a] Yildiz, C., Heinonen, M., In-
tosalmi, J., Mannerstrom, H., and Lahdesmaki, H.
(2018a). Learning stochastic differential equations
with gaussian processes without gradient matching.
In IEEE International Workshop on Machine Learn-
ing for Signal Processing (MLSP).

[Yildiz et al., 2018b] Yildiz, C., Heinonen, M., and
Lähdesmäki, H. (2018b). A nonparametric spatio-
temporal SDE model. In Spatiotemporal Workshop
at NeurIPS.



Ustyuzhaninov, Kazlauskaite, Ek, Campbell

Supplementary material

A.1 Numerical solution of the SDE

To ensure that the SDE solutions are monotonic
functions of the initial values, we make assumptions
about the Wiener process realisations W (·, ω). To
compute the SDE solutions under such assumptions,
we draw a Wiener process realisation as well as the
flow field drift and diffusion, and given these draws,
we use the Euler-Maryama numerical solver (follow-
ing [Hegde et al., 2019]). Specifically, starting with
the initial state (x = x1, t = 0), . . . , (x = xN , t = 0),
we use (2) to compute the drift and diffusion at
the current state, and the discretised version of (1)
(i.e. with ∆t and ∆W instead of dt and dW ) to
compute the state update ∆x. This gives the new
state (x1 + ∆x1,∆t), ..., (xn + ∆xn,∆t), and repeating
this procedure (T/∆t) times, we arrive at the state
(S(T, ω;x1), T ), ..., (S(T, ω;xN ), T ), corresponding to
the approximate SDE solution at time T. The mono-
tonic trajectories are recovered by the numerical SDE
solver in the limit of the step size going to zero, ∆t→ 0.
Therefore, the step size must be sufficiently small w.r.t.
the smoothness of the flow; since we use a GP to de-
fine the flow, the smoothness is determined by the
lengthscale of the kernel.

A.2 Implementation details

Our model is implemented in Tensor-
flow [Abadi et al., 2015]. For the evaluations in
Tables 1 and 2 we use 10000 iterations with the
learning rate of 0.01 that gets reduced by a factor of√

10 when the objective does not improve for more
than 500 iterations. For numerical solutions of SDE,
we use Euler-Maruyama solver with 20 time steps, as
proposed in [Hegde et al., 2019].

A.3 Computational complexity

Computational complexity of drawing a sample from
the monotonic flow model is O

(
Nsteps(NM

2 + N2)
)
,

where Nsteps is the number of steps in numerical com-
putation of the approximate SDE solution, NM2 is the
complexity of computing the GP posterior for N inputs
based on M inducing points, and N2 is the complexity
of drawing a sample from this posterior. We typically
draw fewer than 5 samples to limit the computational
cost.

A.4 Non-Gaussian noise

The inference procedures for the monotonic flow and
for the 2-layer model can be easily applied to arbitrary
likelihoods, because they are based on stochastic vari-

ational inference and do not require the closed form
integrals of the likelihood density.

A.5 Functions for evaluating the monotonic
flow model

The functions we use for evaluations are the following:

f1(x) = 3, x ∈ (0, 10] (flat function)

f2(x) = 0.32 (x+ sin(x)), x ∈ (0, 10] (sinusoidal
function)

f3(x) = 3 if x ∈ (0, 8], f3(x) = 6 if x ∈ (8, 10]
(step function)

f4(x) = 0.3x, x ∈ (0, 10] (linear function)

f5(x) = 0.15 exp(0.6x − 3), x ∈ (0, 10] (expo-
nential function)

f6(x) = 3 / [1 + exp(−2x+ 10)], x ∈ (0, 10] (lo-
gistic function)

For the experiments shown in Fig. 3 we generate 50
data points using y = sinc(πx) + ε, ε ∼ N (0, 0.02) for
linearly spaced inputs x ∈ [−1, 1].

A.6 Regression evaluation parameters

For the GP with monotonicity information we choose
M virtual points and place them equidistantly in the
range of the data; we provide the best RMSEs for
M ∈ [10, 20, 50, 100]. For the transformed GP we
report the best results for the boundary conditions
L ∈ [10, 15, 20, 30] and the number of terms in the ap-
proximation J ∈ [2, 3, 5, 10, 15, 20, 25, 30]. For both
models we use a squared exponential kernel. Our
method depends on the time T , the kernel and the
number of inducing points M . For this experiment, we
consider T ∈ [1, 5], M = 40 and two kernel options,
squared exponential and ARD Matérn 3/2. The lowest
RMSE are achieved using the flow and the transformed
GP.

A.7 Uncertainty in alignment model

To further illustrate the advantages of capturing the
uncertainty about the warpings, we wish to find the
possibly bi-modal warpings for each sequence. We
use a Gaussian mixture model (instead of a single
Gaussian) as the distribution of both, the warpings and
the latent variables Z in the GP-LVM. In particular, the
inducing points of the flow for each sequence are defined
to be distributed as a mixture of two multivariate
Gaussians. Then, given a draw from the Categorical
distribution of this mixture, we defines the clusters
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assignments for each sample, and assign the resulting
aligned sequences sj to one of the coherent mixture
component in the distribution of the latent points of the
GP-LVM. Fig. A1 illustrates this behaviour, and gives
an example where the uncertainty in the warps results
in ambiguity in cluster assignments. A full discussion
of the importance of correlations in the variational
parameters for compositional uncertainty is available
in [Ustyuzhaninov et al., 2019] which provides further
details of the inference scheme used.

A.8 Quantitative results

The expected log posterior predictive density is an
evaluation metric defined as:

ELPD = log

∫
p(y∗ | f∗)p(f∗ | y)df∗

≈ log

∫
p(y∗ | f∗)q(f∗ | y)df∗.

(9)

The results on the data described in Sec. 5
(with 100 data points) for the GP with deriva-
tives [Riihimäki and Vehtari, 2010], the transformed
GP [Andersen et al., 2018] and the monotonic flow are
given in Table 3.
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(a) Observations of 3 warped se-
quences.

(b) Examples of sampled aligned functions s. (c) Fitted sequences (left), estimated warps (middle) and fits in the warped
coordinates (right) for the 3 sequences.

Figure A1: Illustration of uncertainty in warps and cluster assignments. When the warps and the cluster assignment are
allowed to be bi-modal, and model captures two possible solutions, one that assigns all sequences to a single cluster and
aligns them within the cluster, and another solution that favours the model with two separate clusters. This can be see in
the fit in warped coordinates figure for the blue curve where the majority of the samples are assigned to one cluster (which
corresponds to now aligning the blue function to the other, as shown on the right in Fig. A1b) while a small subset is
assigned to a new cluster (which corresponds to all sequences being aligned together, as shown on the left in Fig. A1b).

flat sinusoidal step linear exponential logistic

GP 15.1 21.9 27.1 16.7 19.7 25.5
GP projection [Lin and Dunson, 2014] 11.3 21.1 25.3 16.3 19.1 22.4
Regression splines [Shively et al., 2009] 9.7 22.9 28.5 24.0 21.3 19.4
GP approximation [Maatouk, 2017] 8.2 20.6 41.1 15.8 20.8 21.0
GP with derivatives [Riihimäki and Vehtari, 2010] 16.5 ± 5.1 19.9 ± 2.9 68.6 ± 5.5 16.3 ± 7.6 27.4 ± 6.5 30.1 ± 5.7
Transformed GP [Andersen et al., 2018] (VI-full) 6.4 ± 4.5 20.6 ± 5.9 52.5 ± 3.6 11.6 ± 5.8 17.5 ± 7.3 17.1 ± 6.2
Monotonic Flow (ours) 6.8 ± 3.2 17.9 ± 4.2 20.5 ± 5.0 13.2 ± 6.7 14.4 ± 4.8 18.1 ± 5.0

Table 1: Root-mean-square error ± SD (×100) of 20 trials for data of size N = 100

flat sinusoidal step linear exponential logistic

Transformed GP [Andersen et al., 2018] (VI-full) 18.5 ± 14.4 40.0 ± 17.5 101.9 ± 11.4 37.4 ± 22.8 52.9 ± 11.9 51.7 ± 19.6
Monotonic Flow (ours) 21.7 ± 15.0 39.1 ± 13.0 64.5 ± 10.7 30.8 ± 12.0 32.8 ± 17.9 43.2 ± 15.2

Table 2: Root-mean-square error ± SD (×100) of 20 trials for data of size N = 15

flat sinusoidal step linear exponential logistic

GP with derivatives [Riihimäki and Vehtari, 2010] -1.43 ± 0.08 -1.41 ± 0.06 -1.69 ± 0.15 -1.36 ± 0.04 -1.45 ± 0.08 -1.45 ± 0.11
Transformed GP [Andersen et al., 2018] (VI-full) -1.44 ± 0.03 -1.39 ± 0.02 -1.51 ± 0.06 -1.40 ± 0.03 -1.41 ± 0.02 -1.41 ± 0.02
Monotonic Flow (ours) -1.39 ± 0.05 -1.42 ± 0.05 -1.41 ± 0.08 -1.39 ± 0.05 -1.40 ± 0.07 -1.43 ± 0.07

Table 3: Expected log posterior predictive density estimate (± SD) of 20 trials for data of size N = 100
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(c) GP with monotonic information.
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(d) Transformed GP (VI-full).
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(e) Flow (ours).

Figure A2: Comparison of the confidence intervals for standard GP, and monotonic regression methods (GP with monotonic
information from [Riihimäki and Vehtari, 2010] and Transformed GP from [Andersen et al., 2018]). The samples from the
fitted models are shown in blue and the 2 standard deviations from the mean are shown in green.
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