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Abstract

Multi-task learning requires accurate identi-
fication of the correlations between tasks. In
real-world time-series, tasks are rarely per-
fectly temporally aligned; traditional multi-
task models do not account for this and sub-
sequent errors in correlation estimation will
result in poor predictive performance and
uncertainty quantification. We introduce a
method that automatically accounts for tem-
poral misalignment in a unified generative
model that improves predictive performance.
Our method uses Gaussian processes (GPs)
to model the correlations both within and be-
tween the tasks. Building on the previous
work by Kazlauskaite et al. (2019), we include
a separate monotonic warp of the input data
to model temporal misalignment. In contrast
to previous work, we formulate a lower bound
that accounts for uncertainty in both the es-
timates of the warping process and the un-
derlying functions. Also, our new take on a
monotonic stochastic process, with efficient
path-wise sampling for the warp functions,
allows us to perform full Bayesian inference
in the model rather than MAP estimates.
Missing data experiments, on synthetic and
real time-series, demonstrate the advantages
of accounting for misalignments (vs standard
unaligned method) as well as modelling the
uncertainty in the warping process (vs base-
line MAP alignment approach).

1 Introduction

Multivariate datasets gathered across a range of tasks
are increasingly prevalent. In contrast to the estab-
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lished regression regime, where we aim to learn corre-
lations across a time series within a single data source,
we now wish to consider the relationships between dif-
ferent sources of data. This is the canonical multi-task
learning scenario where we seek to model both the cor-
relations within individual datasets as well as the cor-
relations between datasets. If we perform this well,
we are able to provide high-quality predictions, with
appropriate uncertainty quantification, under missing
data scenarios; we can use correlations between time-
series to fill in the gaps in data for specific instances.
Success necessitates an accurate decomposition of cor-
relations between these two factors and is inherently
ill-posed.

To make progress we must find a principled regu-
larisation that trades-off between the two generating
components. Current approaches suffer a limiting as-
sumption that all sources of data have perfect tem-
poral alignment. Importantly, our terminology refers
to the fundamental alignment between the generative
process, not to the precision of a sampling rate. For ex-
ample, two sources of data can share a common ances-
tral generating process but subsequent activities will
introduce delays and phase shifts that result in tem-
poral misalignment irrespective of some measurement
clock. Failure to account jointly for these effects must
lead to incorrect estimates of task correlations; this
is particularly noticeable when we seek to account for
uncertainty in our predictions.

This problem is also called domain shift; the observed
covariates are transformed from some idealised covari-
ates via a distinct (unknown) per-task transforma-
tion (Quionero-Candela et al., 2009). The idealised
covariates are typically unobserved, making such vary-
ing shifts challenging to identify. The problem is fur-
ther complicated by the i.i.d. observation noise.1 Typi-
cal examples of knowledge transfer between time-series
data in a regression setting include: observing data

1Knowledge transfer between tasks is only possible
when observations are assumed to include observation
noise or correspond to different inputs (Wackernagel, 2003;

Bonilla et al., 2008; Álvarez and Lawrence, 2011).
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from multiple tasks and sharing the knowledge be-
tween tasks (Bonilla et al., 2008); observing multi-
ple trials of the same experiment and inferring miss-
ing data in some of the trials using the information
from the others ( �Alvarez et al., 2012); multi-�delity
learning using cheap measurements as a proxy for ex-
pensive ones (Liu et al., 2018; Wang et al., 2020);
and clinical bench-marking where the emphasis is on
the interpretability of the parameters of the covari-
ates (D•urichen et al., 2014).

This paper addresses the temporal misalignment prob-
lem in a multi-task setting for time-series data. We
build our model on Gaussian processes (GPs) to en-
code the prior knowledge of the inter-task and intra-
task structure of the observations. We use a latent
variable construction to infer the inter-task correla-
tions. Similarly to the GP-LVA model of Kazlauskaite
et al. (2019), we introduce a separate warping function
for each task to address dataset shift. We systemat-
ically remove the mismatch between tasks and allow
the multi-task model to accurately transfer informa-
tion between them.

Fig. 1 illustrates a typical problem of dataset shift,
i.e. the inputs to each sequence have been warped by
unknown functions, with missing data. Our aligned
multi-task Gaussian process (AMTGP) model shares
the inter-task information to compensate for both the
unknown transformation of the inputs and the missing
data. The inferred uncertainty in the unknown warps,
Fig. 1(c), is observed to correlate with the regions of
missing data and prevents overcon�dence. In our ex-
periments, we test the model on synthetic and real
time-series. We demonstrate that information shar-
ing between tasks is improved by aligning the inputs
and quantify the performance of the standard and the
aligned MTGP models on missing data problems. We
show that our uncertainty estimates are superior to
the previous GP-LVA approach.

In summary, the contributions of this work are: (1)
a novel probabilistic approach for information trans-
fer between tasks corrupted by temporal misalign-
ment; (2) an e�cient inference scheme based on sparse
stochastic variational inference; (3) a reformulation of
monotonic GP ow (Ustyuzhaninov et al., 2020) with
e�cient training; and (4) a model that is a generalisa-
tion of the GP-LVA model with a rigorous probabilistic
formulation.

2 Related Work

GPs are a standard Bayesian tool for time-series
problems and have been used in Multi-Task (MT)
settings such as dependent GPs (Boyle and Frean,
2004), Multi-Output GPs (MOGPs) (Bilionis et al.,

2013; �Alvarez et al., 2012) and Multi-Task GPs (MT-
GPs) (Bonilla et al., 2008). Historically, the topic
has been termed the linear model of coregionaliza-
tion (Journel and Huijbregts, 1978), kernel meth-
ods for vector-valued functions (Evgeniou and Pontil,
2004) and matrix-variate Gaussian distributions (Du-
tilleul, 1999); for a review please see,e.g. ( �Alvarez
et al., 2011).

MTGPs Bonilla et al. (2008) place a GP prior
over each sequence (task) and include a free-form
covariance matrix (constrained to be positive semi-
de�nite). To reduce complexity, inter-task correla-
tions can be modelled using probabilistic principal
component analysis (pPCA); Stegle et al. (2011) ex-
tend this to a GP-LVM for the covariance. �Alvarez
and Lawrence (2011) use convolution processes to im-
pose correlations that can be applied in cases where
some of the sequences are blurred versions of the oth-
ers. More recently, Boustati et al. (2019) used com-
positional (deep) GPs for MT learning through non-
linear mixing of latent processes (shared and individ-
ual). Zhe et al. (2019) propose a MOGP model with la-
tent GPs as covariates and focus on inference e�ciency
exploiting the grid placement of the observations and
the (deep) Kronecker factorisation. Hamelijnck et al.
(2019) propose an application of the MT framework to
multi-resolution spatio-temporal problems.

Alignment While many heuristic methods for the
alignment of data have been developed (e.g. dynamic
time warping), the work on alignment of data in prob-
abilistic multi-task learning has been limited to simple
shift or scale (D•urichen et al., 2014). The multi-task
models from statistical literature largely come from
geostatistics,i.e. spatio-temporal modelling (Sahu and
Mardia, 2005). These models are usually applica-
tion speci�c and in most cases use linear transforma-
tions for alignments (e.g. (Forlani et al., 2020)). An-
other line of work is structured covariance estimation
(Barnard et al., 2000), (Spezia, 2019), although these
methods do not explicitly model misalignments.

Deep GPs & Alignment While some of the pro-
posed approaches consider deeps GPs (DGPs) as mod-
els for sequences (Boustati et al., 2019; Hamelijnck
et al., 2019), their motivation is applications where the
data are known to be generated by functional compo-
sition. Explicit temporal mismatch between sequences
is not considered (no monotonic constraint on latent
layers). Importantly, the existing works that do model
temporal alignment, (Kaiser et al., 2018; Duncker and
Sahani, 2018), assume the groups of tasks to align are
known a-priori. This signi�cantly simpli�es the align-
ment problem and this knowledge is not present in
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(a) Observations and data �t (b) Aligned multi-task GP (c) Uncertainty in the warps

Figure 1: Multi-task model for 10 time-series with missing data (shown in black). (a) Observed data that comes from
two di�erent underlying sequences; for clarity, the sequences are coloured and plotted with a vertical o�set. (b) Fitted
aligned multi-task model. The model correctly uncovers and describes the two types of sequences despite missing data
and dataset shift. (c) The predictive standard deviation (uncertainty) of the estimated warps is shown to correlate well
with the missing data regions (shown in grey) for each task.

the general MT learning formulation. The motiva-
tion for our work is closer to the GP alignment mod-
els (Kazlauskaite et al., 2018, 2019). Contrary to these
models, we propose a joint probabilistic approach that
is motivated by MT applications rather than a regu-
larised GP regression model that is aimed primarily at
an alignment goal.

Sparse Variational GPs One of the weaknesses of
the traditional GP formulation is the poor computa-
tional scaling with respect to the number of observa-
tions; this is especially apparent in the multi-task case
where the computational cost scales asO(J 3N 3) for J
tasks, each with N observations. Therefore, e�ciency
issues of such multi-task models have been considered
in most papers on the subject, e.g. ( �Alvarez et al.,
2012; Hamelijnck et al., 2019; Zhe et al., 2019).

Bringing the ideas from Kazlauskaite et al. (2018) to
a multi-task scenario, we propose a method that is
able to model exibly misalignments in GP multi-
task learning. In this work, we follow the sparse
GP approach of Titsias (2009) and the subsequent
stochastic extension of the variational inference frame-
work (Hensman et al., 2013).

3 Background

Gaussian Processes We make use of GPs for the
Bayesian modelling of time-series data as they of-
fer a convenient way of de�ning priors over func-
tions (Williams and Rasmussen, 2006). We denote a
GP functional prior, fully speci�ed by a mean func-
tion m(x) (typically assumed to be zero) and a covari-
ance function k(x; x 0), as f (x) � GP

�
m(x); k(x; x 0)

�
.

Thus given a �nite set of inputs x1; : : : ; xN , we may
draw samples f (x1); : : : ; f (xN ) from the GP prior:
f (x1); : : : ; f (xN ) � N (0; K ) where K ij := k(x i ; x j ).
The model of the data is yi = f (x i ) + � i where
� i � N (0; � 2) is Gaussian noise. Learning in exact
GP models typically consists of inferring the hyper-

parameters of a speci�ed covariance function. This can
only be performed in closed form under Gaussian likeli-
hoods and at high computational expenseO(N 3) (due
to the inversion of the covariance matrix); approximate
inference methods provide more e�cient inference and
relax the likelihood restrictions.

Multi-task GPs In multi-task GPs (MTGPs), we
assume that observations of some latent functionsF 2
RN � J comprise J sequences (corresponding toJ
tasks), each of which we model using a GP and,
furthermore, there exists some unknown correlation
structure among the tasks. In one of the most
widely used models, intrinsic coregionalization model
(ICM, Goovaerts et al. (1997)), the joint model is then
de�ned as vec(F) � N (vec(M ); K  
 K � ) with some
meanM and a covariance structure that adopts a Kro-
necker product form where theJ � J covariance matrix
K  captures the correlations among theJ tasks, while
the N � N matrix K � models the correlations between
the N observations in each of theJ sequences.

While we base our work on ICM and its latent variable
extension, the idea of temporal alignment in multi-task
learning is general and can be applied to other MTGP
models. For a review of other MTGP models see Liu
et al. (2018).

GP Latent Variable Alignment Model Here we
give a brief introduction to the work of Kazlauskaite
et al. (2019), which inspired this work, and high-
light the important di�erences. GP Latent Vari-
able Alignment (GP-LVA) (Kazlauskaite et al., 2018,
2019) is designed with the primary goal of sequence
alignment. The method models aligned functions as
pseudo-observations that should have high likelihoods
under two separate parts of the model simultaneously.
One part models temporal consistency using GPs, the
other models inter-sequence relationship using a GP-
LVM. While this trick works empirically, it has a num-
ber of downsides: (1) predictive posterior is condi-
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tioned on both data and pseudo-observations, which
leads to underestimated uncertainty, (2) it is unclear
how to generate samples from the model since the de-
pendencies between two parts of the model are induced
via the pseudo-observations of aligned functions, while
marginalizing out these aligned functions leads to the
two parts of the model becoming independent, and
(3) to reconcile the two parts of the model the authors
add heuristic noise terms which reduces the model in-
terpretability. In contrast, our model is a fully gen-
erative probabilistic model, cast in terms of a stan-
dard GP framework. We formulate a proper evidence
lower bound, used for inference and hyperparameter
learning. The aligned functions are treated in the
Bayesian way, with variational posterior distributions
and the latent warpings are explicitly modelled and
marginalised out (rather than taking a MAP estimate
as in GP-LVA). In summary, the model of Kazlauskaite
et al. (2019) could also be seen as a partial approxi-
mation to our model while we preserve the full model
and use approximate inference. Moreover, due to its
use of pseudo-observations, GP-LVA can not handle
missing data in a principled way, su�ering from un-
derestimated uncertainty, particularly in the areas of
missing data.

Monotonic GPs To model the aligned functions we
must account explicitly for the unknown misalignment
subject to the constraint that it must be monotone.
There have been a number of proposals for approxi-
mations to de�ne monotonic GPs: for example, trun-
cated or �nite-dimensional approximations (Maatouk,
2017; Lopez-Lopera et al., 2019); incorporating virtual
derivative information (Riihim•aki and Vehtari, 2010);
projections onto spaces of monotone functions (Lin
and Dunson, 2014); or through non-linear transfor-
mations (Andersen et al., 2018). Instead, we de�ne
a guaranteed monotonic stochastic process through a
di�erential ow that provides smooth solutions that
are guaranteed monotonic across the entire domain
without distorted uncertainty estimation (Ustyuzhani-
nov et al., 2020). We extend this work with a mod-
i�ed model, better considered as an Ordinary Di�er-
ential Equation (ODE) with an uncertain drift func-
tion, rather than the Stochastic Di�erential Equation
(SDE) of Ustyuzhaninov et al. (2020), and provide a
new approach for e�cient inference.

4 Model

Consider a data vector y j = f yjn gN
n =1 , where yjn is

a noisy observation of the function f j (x jn ) and a cor-
responding input vector x j = f x jn gN

n =1 for each of
J tasks with a length of N observations. For clarity
of notation, we will consider tasks to be of the same

length; in the case of di�erent lengths, the vec oper-
ator should be replaced with concatenation. Let f j

denote the values of the function f j (�) at inputs x j .
We denote all input data as X = [ x1; ::; x J ] and the
observed data matrix asY = [ y1; ::; y J ]. Stacked vec-
tors of the observed data and inputs is then denoted
asy = vec(Y ) and x = vec(X ) respectively. Similarly,
F = [ f1; ::; fJ ] and f = vec(F).

4.1 Multi-Task Gaussian Processes (MTGPs)

First, we introduce a latent variable version of the
standard MTGP formulation. Typically, in ICM the
correlations between tasks are modelled with a free-
form covariance (in the absence of task-speci�c fea-
tures). Similarly to Stegle et al. (2011) and Dai
et al. (2017), we choose a more exible approach and
use latent variables to model the inter-task dependen-
cies. Each task is assumed to have a corresponding
latent variable zj 2 RQ . We put a spherical Gaussian
prior on the latent variables zj � N (zj j0; I ). The
functions are assumed to be a joint sample from a
GP with a separable kernel over the latent and input
spaces taking the formf j z; X � GP (f j 0; K ), where
K jn;j 0n 0 = k (zj ; zj 0) k� (xn ; xn 0) is the covariance be-
tween the n-th input of f j (�) and the n0-th input of
f j 0(�). The kernel k (�; �) acting on latent variables
determines similarities across the tasks, and kernel
k� (�; �) a�ects the properties of each of the tasks sep-
arately. This approach allows for the explicit incorpo-
ration of priors on the inter-task dependencies.

4.2 Aligned Multi-Task GPs (AMTGPs)

In a standard MTGP model, the tasks are assumed to
be aligned across inputs. However, especially in realis-
tic scenarios where the input is time, these tasks might
be misaligned due to various unmodelled factors. To
overcome this, we account for temporal misalignments
between tasks by warping the inputs with latent mono-
tonic functions; this reects the assumption that mis-
alignment manifests as delays and phase shifts but not
as non-causal permutations of time. The values off j

are modelled using inferred aligned input valuesgj .

Monotonic Warps Here we consider warps to be
independent between tasks (e.g. sampling errors or
phase noise) that we model as smooth monotonic func-
tions. For each task j , the alignment is modelled with
a monotonic function gj (x jn ) and the corresponding
values of the function for all inputs x j are denoted by
gj . As discussed in Sec. 3, there are a number of di�er-
ent approaches to constrain a GP to be monotonic. We
build upon the monotonic GP ow solution proposed
by Ustyuzhaninov et al. (2020). There, a stochastic
process is de�ned as a �xed time, initial value solu-
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tion to a Stochastic Di�erential Equation (SDE). Sub-
ject to constraints on how the SDE is de�ned (using
a GP �eld) and the inference procedure, every sam-
pled solution is guaranteed not to permute the inputs
and, therefore, remain monotone. In contrast to the
SDE formulation, we pose a monotonic process as the
solution to an Ordinary Di�erential Equation (ODE)
du = w(u) d� but where the drift function w(�) is un-
certain; we place a GP prior over the drift function
w(u) � GP

�
0; K ! (u; u)

�
. We thus de�ne the mono-

tonic warping processgj (x) as the solution, at � = T,
to the ODE:

gj (x) := uj (� = T; x) =
Z T

0
wj

�
u(� )

�
d� (1)

subject to initial condition u(� = 0) := x . To draw a
sampleg(s)

j from the process we �rst draw a posterior
function sample from the GP w(s) (�) and solve the
resulting ODE jointly for all elements in x j . The use
of an ODE rather than an SDE has the advantage of
guaranteed smoothness, from the GP prior onw(�),
and allows the use of higher-order adaptive solvers,
e.g. Runge-Kutta (Schober et al., 2014).

The di�culty presented is the requirement to draw a
single function sample from the GP for integration by
the ODE solver. Typically, we draw joint samples from
a GP posterior only for a given �nite set of input lo-
cations. For the ODE, we do not know a priori all the
input locations; they are only revealed sequentially as
the solver progresses and depend on function evalua-
tions for previous values of� . We solve this problem
using a recent result in e�cient path-wise sampling
from GP posteriors from Wilson et al. (2020). This
allows us, not only, to evaluate the sampled function
w(s) (�) sequentially, but also to perform the evalua-
tion e�ciently without performing expensive Cholesky
operations (which scale cubically with the number of
posterior samples). Further details of this inference
procedure are provided in Sec. 5.2. We note a concur-
rent work by Hegde et al. (2021) that similarly uses
path-wise sampling from a GP to infer posterior of an
ODE system.

Joint Distribution The joint probability distribu-
tion factorises as

p(y ; f ; z; g; w j X ; �; �;  ) = p(f j z; g; �;  )
JY

j =1

p(gj j x j ; wj ) p(wj ) p(zj )
NY

n =1

p(yjn j f jn ; � ) :

(2)

The terms in the joint distribution are:

y j f ; � � N (y j f ; � � 1I JN );

f j z; g � GP
�
f j 0; K  (zj ; zj 0) � K � (gj;n ; gj 0;n 0)

�
;

gj j x j ; wj � Monotonic Process2
�
gj j x j ; wj

�
; (3)

wj � GP
�
wj j 0; K ! (uj ; uj )

�
;

zj � N (zj j 0; I Q );

where � denotes a tensor product such that
[K f ;f ]jn;j 0n 0 = [ K  (zj ; zj 0)] j;j 0[K � (gj;n ; gj 0;n 0)] jn;j 0n 0.
The functional values f are fully correlated across all
inputs and tasks that leads to the problematic com-
plexity of O(J 3N 3). Since all f gj g are now di�erent,
we can no longer utilise the Kronecker structure, as
was suggested in previous work,e.g. Zhe et al. (2019).
To address this we formulate a stochastic variational
inference scheme, following the framework of Hensman
et al. (2013).

5 Inference

Several parts of the model pose distinct challenges for
inference. Firstly, the covariance off depends on both
latent variables z and the warps g, hence we can not
marginalize them out in closed form. Secondly, even
if we use point estimates forz and g (e.g. MAP), the
resulting covariance matrix would be of sizeJN � JN ,
which is prohibitively expensive to invert. Notice, that
we cannot use Kronecker decomposition of the covari-
ance, a typical e�ciency trick in multi-task GP mod-
els (Stegle et al., 2011; Dai et al., 2017), in the case of
misaligned or missing data. To deal with these issues,
and avoid point estimates, we adopt a sparse Stochas-
tic Variational Inference (SVI) scheme.

We wish to compute the marginal likelihood of the
data p(y j X ) =

R
p(y j g; z) p(g j X ) p(z) dz dg. This

integral is intractable as both latent variables z and
warps g appear nonlinearly inside the inverse of the
covariance matrix. To address this, we use a varia-
tional approach and introduce separable distributions
over the latent variables q(z) :=

Q J
j =1 q(zj ) and warps

q(g) :=
Q J

j =1 q(gj ) to approximate the true posterior
p(z; g j y ; X ). The log marginal likelihood can then be
bounded using Jensen's inequality:

logp(y j X ) � Eq(z)q(g)
�

logp(y j z; g)
�

� KL
�
q(z) k p(z)

�
� KL

�
q(g) k p(g)

�
: (4)

The expectation is still intractable, but we can fur-
ther bound L 1 := log p(y j z; g) using the sparse VI
approach of Titsias (2009).

2 In the ODE formulation of Monotonic Process,
gj j x j ; wj is deterministic, however, for simplicity, we often
use gj to denote a general stochastic monotonic warp.
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5.1 Sparse Stochastic Variational Inference

To make progress, we augment our model by introduc-
ing a set of inducing variables. Consider a set ofM
auxiliary variables h 2 RM evaluated at some arti�cial
pseudo-inputs [~X ; ~Z], where ~X 2 RM and ~Z 2 RM � Q .
We may then de�ne an augmented joint distribution
as

p(y ; f ; h; z; g j X ; ~X ; ~Z) = p(y j f )

p(f j h; z; g; ~X ; ~Z) p(h j ~X ; ~Z) p(g j X ) p(z) : (5)

Following the approach of (Titsias, 2009), we de�ne
a sparse approximation to the posterior distribution
over f using the inducing variables. Omitting the de-
pendence onX for clarity, the exact posterior over f
in the augmented model can be described by the pre-
dictive Gaussian distribution

p(f j y ; g; z) =
Z

p(f j h; y ; g; z) p(h j y ; g; z) dh : (6)

Suppose that h is a su�cient statistic for f , mean-
ing that for any new inputs [X � ; Z � ] and the corre-
sponding function values f � , we have f � ? f j h or
p(f � j h; f ) = p(f � j h). Similarly to Titsias (2009) (see
supplement for more details), it follows that we can
drop the dependence ony in the posterior such that
p(f j h; y ; g; z) = p(f j h; g; z). Under this assumption,
we can write an approximation to the exact posterior
in (6) as q(f ) =

R
p(f j h; g; z) q(h) dh, where we spec-

ify that q(h) := N (h j m h ; Sh ). The variational distri-
bution over f and h is then q(f ; h) = p(f j h; g; z) q(h).

Now, using the augmented model and the variational
distribution q(f ; h), we can write the lower bound on
L 1 as

L 1 = log p(y j z; g)

= log
Z

p(f jh; z; g)q(h)
p(y j f )p(h)

q(h)
dh df

� L 2 � KL
�
q(h) k p(h)

�
;

L 2 :=
Z

q(h)
hZ

p(f j h; g; z) log p(y j f ) df
i

dh :

(7)

While it is possible to \collapse" the distribution
q(h) by �nding its optimal parameters (Titsias and
Lawrence, 2010), we choose to follow the stochastic
VI approach of Hensman et al. (2013) and keep the
explicit representation of the inducing variables.

After marginalizing out f and h in the L 2 term of (7),
please see the supplement for detailed derivation, the

overall lower bound L � logp(y ) takes the form

L =
JX

j =1

n
Eq(z j )q(g j )

�
logN (y j j K f j h K � 1

hh m; � � 1I )

�
1
2

Tr[� j S] �
�
2

Tr[� j ]
�

� KL
�
q(zj ) k p(zj )

�
(8)

� KL
�
q(gj ) k p(gj )

� o
� KL

�
q(h) k p(h)

�
;

where we have matrices �j := � K � 1
hh K hf j K f j h K � 1

hh

and � j := K f j ;f j � K f j h K � 1
hh K hf j . The bound is fac-

torised over sequences; combined with the separable
kernels, we only need to compute the following ex-
pectations Eq(z i )

�
K (zj ; ~Z)

�
, Eq(z i )

�
K ( ~Z; zj )K (zj ; ~Z)

�
,

Eq(g j )
�
K (gj ; ~X )

�
and Eq(g j )

�
K ( ~X ; gj )K (gj ; ~X )

�
. In

general, these can be approximated with sampling; the
expectations underq(z) can be computed analytically
for some kernels,e.g. the squared exponential.

Using sparse VI, the GP methodology allows for the
Bayesian treatment of latent variables and warps, as
well as reducing the time complexity to O(JNM 2).
Stochastic VI adds the possibility of further complex-
ity reduction through training using mini-batches of
tasks.

5.2 E�cient SVI for Monotonic Warps

Calculation of (8) requires taking expectations over
the warps under the approximate posteriorsf q(gj )g.
We estimate this bound by drawing samples from the
respective monotonic processes. In Sec. 4.2, we out-
lined the sampling procedure as drawing a function
sample from each GP posteriorw(s)

j (�) and then solv-
ing the initial value ODE to obtain samples from
qj (gj ). As the inputs are unknown a priori, we fol-
low Ustyuzhaninov et al. (2020) and Hegde et al.
(2019), and specify the �eld using a sparse varia-
tional GP (Titsias, 2009). For each sequence, we de-
�ne inducing locations ~U j and pseudo-outputsv j , and
learn an approximate variational posterior q(v j ) =
N (v j j m w;j ; Sw;j ).

As the warps are smooth, we found it most e�cient
to solve the ODE using a simple Euler stepping ap-
proach with 10 steps over� 2 [0; 1] taking gradients
with respect to the variational parameters and ker-
nel hyperparameters. The solver requires the sequen-
tial evaluation of a single functional samplew(s)

j (�) at
arbitrary locations. Standard approaches would re-
quire all inputs to be known and a large covariance
factorised. Instead, we make use of an e�cient approx-
imation scheme using path-wise samples from (Wilson
et al., 2020). We combined Matheron's Rule with a
weight-space approximation to sample from the prior
using random Fourier features (Rahimi and Recht,
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2008). These samples may then be conditioned on the
inducing-locations and samples from their correspond-
ing pseudo-output distributions. Let 
 j be a set of
F random Fourier features for the kernel with hyper-
parameters ! j and b j be a set of draws from a uni-
form distribution over [0 ; 2� ) such that 
 j ; b j 2 RF .
Then � j (u) :=

p
2� ! =F cos(
 j u + b j ) de�nes a fea-

ture space such thatK ! j (u; u0) � � >
j (u) � j (u0). If we

draw samples� (s) � N (0; I F ) and v (s)
j � q(v j ) then

w(s)
j (u) := � >

j (u) � (s) + � (u) ; (9)

� (u) := K ! j (u; ~u j ) K � 1
! j

(~u j ; ~u j )
�
v (s)

j � � >
j (~u j ) � (s) �

gives a single functional draw ofw(s)
j (�) for arbitrary u.

Thus, �xing � (s) and v (s)
j during the ODE solver loop,

we e�ciently solve for samples g(s)
j with complexity

O(N ).

When modelling monotonic warpsg as proposed, i.e.
via ODE with variational GP drift, in eq. (8), q(gj )
is replaced with p(wj jv j )q(v j ) and the corresponding
KL divergence term becomesKL

�
q(v j ) k p(v j )

�
3.

5.3 Learning

Training alternates two steps: (1) using natu-
ral gradients for the variational distributions of
the inducing variables q(h) = N (h j m h ; Sh ) and
q(v j ) = N (v j j m w;j ; Sw;j ) (see Hensman et al.
(2013) for details); and (2) estimating q(zj ) =
N (zj j m z;j ; diag(sz;j )) alongside the noise precision�
and kernel hyperparameters�; f ! j g using the Adam
optimizer (Kingma and Ba, 2014). We �x the la-
tent space lengthscale and variance hyperparameters
 to 1 to avoid excessive parameterization and ini-
tialise the latent variables z using linear PCA. We use
the GPflow framework (Matthews et al., 2017) and the
GPflowSampling path sampling toolkit (Wilson et al.,
2020). The code is available online4.

6 Experiments

To show that multi-task GP learning and inference
bene�ts from alignment, we compare our AMTGP
model against a version without the alignment func-
tionality, denoted MTGP. MTGP can be seen as a fully
Bayesian version of Latent Variable Multiple Output
Gaussian Processes (Dai et al., 2017). To illustrate the
bene�ts of marginalising out the warps, we also add re-
sults for the aligned model using point MAP estimates
for the warps as in GP-LVA (denoted M-AMTGP).
The MAP estimates are obtained by optimising a set

3See B.3 in the supplement for details
4https://github.com/OlgaMikheeva/aligned_mtgp

of auxiliary variables (constrained to be monotone) un-
der a GP prior as proposed by GP-LVA (Kazlauskaite
et al., 2019). We also make comparison to GP-LVA.

We evaluate AMTGP on synthetic data as well as
three real datasets: dynamic emotional facial ex-
pressions (Livingstone and Russo, 2018), heartbeat
sounds (Bentley et al., 2011), and respiratory mo-
tion traces (Ernst, 2011) (please see the supplement).
We perform a quantitative evaluation on the task of
predicting missing data in three scenarios: (S1) data
missing at random, (S2) a continuous segment of data
missing at the same location for all tasks, and (S3)
continuous segments of data missing at di�erent lo-
cations for each task. The performance of the two
approaches is compared using both the standardised
mean squared error (SMSE) and the standardised neg-
ative log probability density (SNLP) (Williams and
Rasmussen, 2006). The results are presented with
statistics over 10 random data amputations. For all
experiments, a Mat�ern 5/2 kernel is used for the warp
di�erential �eld GP prior. For fair comparison, the
number of inducing points for each model is chosen
from the ELBO for the full dataset.

Synthetic Data We generate synthetic data by tak-
ing two 1-D functions and applying �ve random mono-
tonic warps to each, adding i.i.d. Gaussian noise, to
produce ten misaligned tasks. Missing data prediction
performance is compared across the tasks in the three
scenarios S1 - S3; 20% of the full data were removed
and an SE kernel used. The results are summarised
in Table 1 and Fig. 2. The latent variable posterior
distribution (Figs. 2(a),(g)) shows that AMTGP and
GP-LVA correctly identify the two underlying groups
of tasks and that MTGP is unable to detect corre-
lations between misaligned versions of the same task.
The unaligned MTGP result (Fig. 2(c)) does not share
information correctly and over-�ts, resulting in large
error bars and poor test performance. Whilst the M-
AMTGP aligns the data and improves the mean, the
point estimate of the warp is overcon�dent. With the
full marginalisation of the warps, AMTGP is able to
both align correctly and model the uncertainty accu-
rately (Fig. 2(i)) resulting in improved performance
for both SMSE and SNLP. Notably, in the scenarios
with missing segments, S2 and S3, GP-LVA has very
poor uncertainty estimation, con�rming the detrimen-
tal e�ect of pseudo-observations on missing data re-
construction.

Facial Expressions We also test our method on
a dataset of dynamic emotional facial expressions
RAVDESS (Livingstone and Russo, 2018). This
dataset contains recordings of people saying a short
phrase with di�erent emotions. We use mouth land-
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(a) MTGP Z (b) MTGP function posteriors (unaligned) (c) MTGP missing data examples

(d) GP-LVA Z (e) GP-LVA function posteriors (aligned) (f) GP-LVA missing data examples

(g) AMTGP Z (h) AMTGP function posteriors (aligned) (i) AMTGP missing data examples

Figure 2: MTGP (top row), GP-LVA (middle row) and full AMTGP (bottom row) results on synthetic data for missing
data scenario S3. (a), (d) and (g) show log-scaled posterior over the latent space. (b), (e) and (h) show posterior over
f with 2 � uncertainty bars. (g), (f) and (i) show the data and corresponding predictive distributions for two examples
from the two di�erent groups of tasks; this clustering (g) is correctly identi�ed by AMTGP. Data points shown in black
are the missing values and plots are vertically o�set for clarity. MTGP has to introduce large error bars to account for
the missing data (a) and, while it aligns correctly, GP-LVA becomes overcon�dent (f); in contrast, full AMTGP correctly
accounts for the uncertainty in the warps and accurately models the missing data distribution (i).

Table 1: Results on the Synthetic Data.

S1 S2 S3

Train Test Train Test Train Test

MTGP (SMSE) 0.0069 � 0.0003 0.0102� 0.0009 0.0072� 0.0006 0.1573� 0.0624 0.0068� 0.0002 0.157 � 0.0663
GP-LVA (SMSE) 0.0082 � 0.0004 0.0112� 0.0008 0.0085� 0.0009 1.3053� 1.0803 0.0086� 0.0024 0.1123� 0.0727

M-AMTGP (SMSE) 0.0061� 0.0002 0.0097� 0.0009 0.0066� 0.0006 0.0534� 0.0181 0.0062� 0.0001 0.0528� 0.0235
AMTGP (SMSE) 0.0076� 0.0002 0.0099� 0.0007 0.0079� 0.0007 0.052 � 0.0193 0.0076� 0.0002 0.058 � 0.0235

MTGP (SNLP) -1930.7 � 13.5 -456.4� 7.6 -1919.8� 32.4 -258.5� 52.4 -1935.7� 11.2 -167.1� 72.4
GP-LVA (SNLP) -1840.6 � 19.7 -399.7� 16.0 -1806.4� 41.4 14232.6� 12776.9 -1810.5� 74.5 1115.6� 1126.2

M-AMTGP (SNLP) -2024.9 � 10.3 -460.7� 11.8 -1997.0� 34.5 -181.6� 128.3 -2015.7� 8.1 -61.9� 242.2
AMTGP (SNLP) -1836.0 � 11.8 -442.0� 7.4 -1826.6� 36.6 -245.4� 92.7 -1812.3� 18.5 -156.3� 141.3

mark coordinate sequences extracted from the data,
share warping functions across all coordinates from
each recording, and use a Mat�ern5/2 kernel. We use
two instances of the same phrase by the same per-
son and ten mouth coordinates. Scenario S2 with
10% signal removal is employed on one instance and
the other left intact. Both models are able to group
lower and upper lip coordinates in each recording,
but AMTGP also detects the similarity across record-
ing instances, resulting in only two �nal clusters
(Fig. 3(d)). The missing data prediction of AMTGP

is inuenced by the behaviour of the other observed
instance (Fig. 3(f)), while MTGP is unable to use this
information resulting in phase errors (Fig. 3(c)).

Heartbeat Sounds We also consider sequences
of heartbeat sounds recorded by a digital stetho-
scope (Bentley et al., 2011). A normal heart sound
has a clear \lub dub, lub dub" pattern that varies
temporally depending on the age, health, and state of
the subject. The models are tested in scenario S1 with
20% missing data, a Mat�ern 5/2 kernel is used, and the


	Introduction
	Related Work
	Background
	Model
	Multi-Task Gaussian Processes (MTGPs)
	Aligned Multi-Task GPs (AMTGPs)

	Inference
	Sparse Stochastic Variational Inference
	Efficient SVI for Monotonic Warps
	Learning

	Experiments
	Conclusion and Limitations
	PGM
	Derivations
	Sufficient Statistic Assumption
	L2 Bound
	Bound for Monotonic GP warps
	M-AMTGP: MAP estimate of the warps
	GP-LVA: extension to missing data

	Additional Experiments and Plots
	Heartbeat Data
	Respiratory Motion Traces
	Extra Experiment with Facial Expression Data
	Sequence Alignment

	Model Parameters and Implementation
	Model and Training Parameters
	Implementation Details
	Computational time


