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Abstract

Multi-task learning requires accurate identi-
fication of the correlations between tasks. In
real-world time-series, tasks are rarely per-
fectly temporally aligned; traditional multi-
task models do not account for this and sub-
sequent errors in correlation estimation will
result in poor predictive performance and
uncertainty quantification. We introduce a
method that automatically accounts for tem-
poral misalignment in a unified generative
model that improves predictive performance.
Our method uses Gaussian processes (GPs)
to model the correlations both within and be-
tween the tasks. Building on the previous
work by Kazlauskaite et al.|(2019), we include
a separate monotonic warp of the input data
to model temporal misalignment. In contrast
to previous work, we formulate a lower bound
that accounts for uncertainty in both the es-
timates of the warping process and the un-
derlying functions. Also, our new take on a
monotonic stochastic process, with efficient
path-wise sampling for the warp functions,
allows us to perform full Bayesian inference
in the model rather than MAP estimates.
Missing data experiments, on synthetic and
real time-series, demonstrate the advantages
of accounting for misalignments (vs standard
unaligned method) as well as modelling the
uncertainty in the warping process (vs base-
line MAP alignment approach).

1 Introduction

Multivariate datasets gathered across a range of tasks
are increasingly prevalent. In contrast to the estab-
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lished regression regime, where we aim to learn corre-
lations across a time series within a single data source,
we now wish to consider the relationships between dif-
ferent sources of data. This is the canonical multi-task
learning scenario where we seek to model both the cor-
relations within individual datasets as well as the cor-
relations between datasets. If we perform this well,
we are able to provide high-quality predictions, with
appropriate uncertainty quantification, under missing
data scenarios; we can use correlations between time-
series to fill in the gaps in data for specific instances.
Success necessitates an accurate decomposition of cor-
relations between these two factors and is inherently
ill-posed.

To make progress we must find a principled regu-
larisation that trades-off between the two generating
components. Current approaches suffer a limiting as-
sumption that all sources of data have perfect tem-
poral alignment. Importantly, our terminology refers
to the fundamental alignment between the generative
process, not to the precision of a sampling rate. For ex-
ample, two sources of data can share a common ances-
tral generating process but subsequent activities will
introduce delays and phase shifts that result in tem-
poral misalignment irrespective of some measurement
clock. Failure to account jointly for these effects must
lead to incorrect estimates of task correlations; this
is particularly noticeable when we seek to account for
uncertainty in our predictions.

This problem is also called domain shift; the observed
covariates are transformed from some idealised covari-
ates via a distinct (unknown) per-task transforma-
tion (Quionero-Candela et all [2009)). The idealised
covariates are typically unobserved, making such vary-
ing shifts challenging to identify. The problem is fur-
ther complicated by the i.i.d. observation noiseE] Typi-
cal examples of knowledge transfer between time-series
data in a regression setting include: observing data

'Knowledge transfer between tasks is only possible
when observations are assumed to include observation
noise or correspond to different inputs (Wackernagel, 2003}

Bonilla et al.| 2008; Alvarez and Lawrence, [2011)).



Aligned Multi-Task Gaussian Process

from multiple tasks and sharing the knowledge be-
tween tasks (Bonilla et al. [2008); observing multi-
ple trials of the same experiment and inferring miss-
ing data in some of the trials using the information
from the others (Alvarez et all 2012); multi-fidelity
learning using cheap measurements as a proxy for ex-

Im \Alvarez et al., IM and Multi-Task GPs (MT-
GPs) (Bonilla et all [2008). Historically, the topic
has been termed the linear model of coregionaliza-
tion (Journel and Huijbregts, (1978)), kernel meth-
ods for vector-valued functions (Evgeniou and Pontil,
2004) and matrix-variate Gaussian distributions (Du-

pensive ones (Liu et al| [2018; [Wang et al.l [2020);

tilleulL 1999); for a review please see, e.g. (Alvarez

and clinical bench-marking where the emphasis is on
the interpretability of the parameters of the covari-
ates (Durichen et al., 2014).

This paper addresses the temporal misalignment prob-
lem in a multi-task setting for time-series data. We
build our model on Gaussian processes (GPs) to en-
code the prior knowledge of the inter-task and intra-
task structure of the observations. We use a latent
variable construction to infer the inter-task correla-

tions. Similarly to the GP-LVA model of |[Kazlauskaite
(2019), we introduce a separate warping function

for each task to address dataset shift. We systemat-
ically remove the mismatch between tasks and allow
the multi-task model to accurately transfer informa-
tion between them.

Fig. [1] illustrates a typical problem of dataset shift,
i.e. the inputs to each sequence have been warped by
unknown functions, with missing data. Our aligned
multi-task Gaussian process (AMTGP) model shares
the inter-task information to compensate for both the
unknown transformation of the inputs and the missing
data. The inferred uncertainty in the unknown warps,
Fig. is observed to correlate with the regions of
missing data and prevents overconfidence. In our ex-
periments, we test the model on synthetic and real
time-series. We demonstrate that information shar-
ing between tasks is improved by aligning the inputs
and quantify the performance of the standard and the
aligned MTGP models on missing data problems. We
show that our uncertainty estimates are superior to
the previous GP-LVA approach.

In summary, the contributions of this work are: (1)
a novel probabilistic approach for information trans-
fer between tasks corrupted by temporal misalign-
ment; (2) an efficient inference scheme based on sparse
stochastic variational inference; (3) a reformulation of
monotonic GP flow (Ustyuzhaninov et al.l [2020) with
efficient training; and (4) a model that is a generalisa-
tion of the GP-LVA model with a rigorous probabilistic
formulation.

2 Related Work

GPs are a standard Bayesian tool for time-series
problems and have been used in Multi-Task (MT)
settings such as dependent GPs (Boyle and Frean

2004)), Multi-Output GPs (MOGPs) (Bilionis et al.

et al.L 2011)).

MTGPs [Bonilla et al| (2008) place a GP prior
over each sequence (task) and include a free-form
covariance matrix (constrained to be positive semi-
definite). To reduce complexity, inter-task correla-
tions can be modelled using probabilistic principal
component analysis (pPCA); [Stegle et al| (2011)) ex-
tend this to a GP-LVM for the covariance. Alvarez
land Lawrence (2011]) use convolution processes to im-
pose correlations that can be applied in cases where
some of the sequences are blurred versions of the oth-
ers. More recently, [Boustati et al| (2019)) used com-
positional (deep) GPs for MT learning through non-
linear mixing of latent processes (shared and individ-
ual). propose a MOGP model with la-
tent GPs as covariates and focus on inference efficiency
exploiting the grid placement of the observations and
the (deep) Kronecker factorisation. [Hamelijnck et al.|
propose an application of the MT framework to
multi-resolution spatio-temporal problems.

Alignment While many heuristic methods for the
alignment of data have been developed (e.g. dynamic
time warping), the work on alignment of data in prob-
abilistic multi-task learning has been limited to simple
shift or scale (Diirichen et al., [2014). The multi-task
models from statistical literature largely come from

geostatistics, i.e. spatio-temporal modelling (Sahu and
2005). These models are usually applica-

tion specific and in most cases use linear transforma-
tions for alignments (e.g. (Forlani et al. 2020)). An-
other line of work is structured covariance estimation
(Barnard et all [2000), (Spezial [2019), although these
methods do not explicitly model misalignments.

Deep GPs & Alignment While some of the pro-
posed approaches consider deeps GPs (DGPs) as mod-
els for sequences (Boustati et al., |2019; Hamelijnck
, their motivation is applications where the
data are known to be generated by functional compo-
sition. Explicit temporal mismatch between sequences
is not considered (no monotonic constraint on latent
layers). Importantly, the existing works that do model
temporal alignment, (Kaiser et al.,|2018; |Duncker and|
, assume the groups of tasks to align are
known a-priori. This significantly simplifies the align-
ment problem and this knowledge is not present in
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(a) Observations and data fit

(b) Aligned multi-task GP

(c) Uncertainty in the warps

Figure 1: Multi-task model for 10 time-series with missing data (shown in black). Observed data that comes from
two different underlying sequences; for clarity, the sequences are coloured and plotted with a vertical offset. @ Fitted
aligned multi-task model. The model correctly uncovers and describes the two types of sequences despite missing data
and dataset shift. The predictive standard deviation (uncertainty) of the estimated warps is shown to correlate well

with the missing data regions (shown in grey) for each task.

the general MT learning formulation. The motiva-
tion for our work is closer to the GP alignment mod-
els (Kazlauskaite et al., [2018,2019). Contrary to these
models, we propose a joint probabilistic approach that
is motivated by MT applications rather than a regu-
larised GP regression model that is aimed primarily at
an alignment goal.

Sparse Variational GPs One of the weaknesses of
the traditional GP formulation is the poor computa-
tional scaling with respect to the number of observa-
tions; this is especially apparent in the multi-task case
where the computational cost scales as O(J3N?3) for J
tasks, each with NV observations. Therefore, efficiency
issues of such multi-task models have been considered

in most papers on the subject, e.g. Alvarez et al.l,

12012; Hamelijnck et all [2019; |Zhe et al. 2019).

Bringing the ideas from |Kazlauskaite et al| (2018) to
a multi-task scenario, we propose a method that is
able to model flexibly misalignments in GP multi-
task learning. In this work, we follow the sparse
GP approach of and the subsequent
stochastic extension of the variational inference frame-
work (Hensman et al.l [2013)).

3 Background

Gaussian Processes We make use of GPs for the
Bayesian modelling of time-series data as they of-
fer a convenient way of defining priors over func-
tions (Williams and Rasmussen, [2006). We denote a
GP functional prior, fully specified by a mean func-
tion m(x) (typically assumed to be zero) and a covari-
ance function k(z,2'), as f(z) ~ GP(m(z), k(z,2’)).
Thus given a finite set of inputs z1,...,xy, we may
draw samples f(z1),...,f(zn) from the GP prior:
f(z1),..., f(xzn) ~ N(0,K) where K;; := k(x;,x;).
The model of the data is y; = f(z;) + € where
€; ~ N(0,0%) is Gaussian noise. Learning in exact
GP models typically consists of inferring the hyper-

parameters of a specified covariance function. This can
only be performed in closed form under Gaussian likeli-
hoods and at high computational expense O(N?) (due
to the inversion of the covariance matrix); approximate
inference methods provide more efficient inference and
relax the likelihood restrictions.

Multi-task GPs In multi-task GPs (MTGPs), we
assume that observations of some latent functions F €
RNXJ comprise J sequences (corresponding to J
tasks), each of which we model using a GP and,
furthermore, there exists some unknown correlation
structure among the tasks. In one of the most
widely used models, intrinsic coregionalization model
(ICM, |Goovaerts et al.|[(1997)), the joint model is then
defined as vec(F) ~ N (vec(M), K, @ Ky) with some
mean M and a covariance structure that adopts a Kro-
necker product form where the J x J covariance matrix
K, captures the correlations among the J tasks, while
the N x N matrix Ky models the correlations between
the N observations in each of the J sequences.

While we base our work on ICM and its latent variable
extension, the idea of temporal alignment in multi-task
learning is general and can be applied to other MTGP
models. For a review of other MTGP models see

et al] (2015).

GP Latent Variable Alignment Model Here we

give a brief introduction to the work of
(2019), which inspired this work, and high-

light the important differences. GP Latent Vari-
able Alignment (GP-LVA) (Kazlauskaite et al., [2018]
is designed with the primary goal of sequence
alignment. The method models aligned functions as
pseudo-observations that should have high likelihoods
under two separate parts of the model simultaneously.
One part models temporal consistency using GPs, the
other models inter-sequence relationship using a GP-
LVM. While this trick works empirically, it has a num-
ber of downsides: (1) predictive posterior is condi-
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tioned on both data and pseudo-observations, which
leads to underestimated uncertainty, (2) it is unclear
how to generate samples from the model since the de-
pendencies between two parts of the model are induced
via the pseudo-observations of aligned functions, while
marginalizing out these aligned functions leads to the
two parts of the model becoming independent, and
(3) to reconcile the two parts of the model the authors
add heuristic noise terms which reduces the model in-
terpretability. In contrast, our model is a fully gen-
erative probabilistic model, cast in terms of a stan-
dard GP framework. We formulate a proper evidence
lower bound, used for inference and hyperparameter
learning. The aligned functions are treated in the
Bayesian way, with variational posterior distributions
and the latent warpings are explicitly modelled and
marginalised out (rather than taking a MAP estimate
as in GP-LVA). In summary, the model of Kazlauskaite
et al. (2019) could also be seen as a partial approxi-
mation to our model while we preserve the full model
and use approximate inference. Moreover, due to its
use of pseudo-observations, GP-LVA can not handle
missing data in a principled way, suffering from un-
derestimated uncertainty, particularly in the areas of
missing data.

Monotonic GPs To model the aligned functions we
must account explicitly for the unknown misalignment
subject to the constraint that it must be monotone.
There have been a number of proposals for approxi-
mations to define monotonic GPs: for example, trun-
cated or finite-dimensional approximations (Maatouk|
2017} [Lopez-Lopera et al., [2019); incorporating virtual
derivative information (Rithiméki and Vehtari, [2010);
projections onto spaces of monotone functions (Lin
and Dunson| [2014)); or through non-linear transfor-
mations (Andersen et all 2018). Instead, we define
a guaranteed monotonic stochastic process through a
differential flow that provides smooth solutions that
are guaranteed monotonic across the entire domain
without distorted uncertainty estimation (Ustyuzhani-
nov et al [2020). We extend this work with a mod-
ified model, better considered as an Ordinary Differ-
ential Equation (ODE) with an uncertain drift func-
tion, rather than the Stochastic Differential Equation
(SDE) of [Ustyuzhaninov et al.| (2020), and provide a
new approach for efficient inference.

4 Model

Consider a data vector y; = {y;n}2_,, where y;, is
a noisy observation of the function f;(x;,) and a cor-
responding input vector x; = {x;,}_; for each of
J tasks with a length of N observations. For clarity
of notation, we will consider tasks to be of the same

length; in the case of different lengths, the vec oper-
ator should be replaced with concatenation. Let f;
denote the values of the function f;(-) at inputs x;.
We denote all input data as X = [x3,..,x] and the
observed data matrix as Y = [y1, ..,y ). Stacked vec-
tors of the observed data and inputs is then denoted
as'y = vec(Y) and x = vec(X) respectively. Similarly,
F =[f},...f;] and f = vec(F).

4.1 Multi-Task Gaussian Processes (MTGPs)

First, we introduce a latent variable version of the
standard MTGP formulation. Typically, in ICM the
correlations between tasks are modelled with a free-
form covariance (in the absence of task-specific fea-
tures). Similarly to |Stegle et al| (2011) and [Dai
et al.| (2017, we choose a more flexible approach and
use latent variables to model the inter-task dependen-
cies. Each task is assumed to have a corresponding
latent variable z; € R?. We put a spherical Gaussian
prior on the latent variables z; ~ N(z;|0,I). The
functions are assumed to be a joint sample from a
GP with a separable kernel over the latent and input
spaces taking the form f|z,X ~ GP(f|0,K), where
Kjn jin = ky(2j,25) ko(Xpn, X, ) is the covariance be-
tween the n-th input of f;(-) and the n/-th input of
fi/(-). The kernel ky(-,-) acting on latent variables
determines similarities across the tasks, and kernel
ko(-,-) affects the properties of each of the tasks sep-
arately. This approach allows for the explicit incorpo-
ration of priors on the inter-task dependencies.

4.2 Aligned Multi-Task GPs (AMTGPs)

In a standard MTGP model, the tasks are assumed to
be aligned across inputs. However, especially in realis-
tic scenarios where the input is time, these tasks might
be misaligned due to various unmodelled factors. To
overcome this, we account for temporal misalignments
between tasks by warping the inputs with latent mono-
tonic functions; this reflects the assumption that mis-
alignment manifests as delays and phase shifts but not
as non-causal permutations of time. The values of f;
are modelled using inferred aligned input values g;.

Monotonic Warps Here we consider warps to be
independent between tasks (e.g. sampling errors or
phase noise) that we model as smooth monotonic func-
tions. For each task j, the alignment is modelled with
a monotonic function g;(z;,) and the corresponding
values of the function for all inputs x; are denoted by
g;. As discussed in Sec.[3] there are a number of differ-
ent approaches to constrain a GP to be monotonic. We
build upon the monotonic GP flow solution proposed
by |Ustyuzhaninov et al. (2020). There, a stochastic
process is defined as a fixed time, initial value solu-



O. Mikheeva, I. Kazlauskaite, A. Hartshorne, H. Kjellstrom, CH. Ek, N. D.F. Campbell

tion to a Stochastic Differential Equation (SDE). Sub-
ject to constraints on how the SDE is defined (using
a GP field) and the inference procedure, every sam-
pled solution is guaranteed not to permute the inputs
and, therefore, remain monotone. In contrast to the
SDE formulation, we pose a monotonic process as the
solution to an Ordinary Differential Equation (ODE)
du = w(u) d7 but where the drift function w(-) is un-
certain; we place a GP prior over the drift function
w(u) ~ GP(0, K, (u,u)). We thus define the mono-
tonic warping process g;(z) as the solution, at 7 =T,
to the ODE:

T
gj(z) =uj(r=T;x) = /0 w; (u(T)) dr (1)

subject to initial condition u(r = 0) := . To draw a
sample g§s) from the process we first draw a posterior

function sample from the GP w(*)(-) and solve the
resulting ODE jointly for all elements in x;. The use
of an ODE rather than an SDE has the advantage of
guaranteed smoothness, from the GP prior on w(),
and allows the use of higher-order adaptive solvers,
e.g. Runge-Kutta (Schober et al., |2014]).

The difficulty presented is the requirement to draw a
single function sample from the GP for integration by
the ODE solver. Typically, we draw joint samples from
a GP posterior only for a given finite set of input lo-
cations. For the ODE, we do not know a priori all the
input locations; they are only revealed sequentially as
the solver progresses and depend on function evalua-
tions for previous values of 7. We solve this problem
using a recent result in efficient path-wise sampling
from GP posteriors from Wilson et al.| (2020). This
allows us, not only, to evaluate the sampled function
w(s)(-) sequentially, but also to perform the evalua-
tion efficiently without performing expensive Cholesky
operations (which scale cubically with the number of
posterior samples). Further details of this inference
procedure are provided in Sec. We note a concur-
rent work by [Hegde et al.| (2021) that similarly uses
path-wise sampling from a GP to infer posterior of an
ODE system.

Joint Distribution The joint probability distribu-
tion factorises as

p(y.f,z,8,w|X,B3,0,¢) =p(f|zg,0,0)

J N
H pg; |%5,w;) p(w;) p(z5) [T p(jn | Fin: B) -

n=1
(2)

The terms in the joint distribution are:

yI£,8~N(yl|f,57 Lin),
flz,g~GP(f|0,Ky(z),2) © Ko(8n:8.n')),
g; | xj,w; ~ Monotonic Procesfl(g; | x;,w;), (3)
w; ~ QP(wj |O,Kw(uj,uj)),
zj ~ N(z;]0,1q),

where © denotes a tensor product such that
(Kegljnjm = [Ky(25,250)5.5 (Ko (&, &7 ) ]jn.jrm-
The functional values f are fully correlated across all
inputs and tasks that leads to the problematic com-
plexity of O(J32N?3). Since all {g;} are now different,
we can no longer utilise the Kronecker structure, as
was suggested in previous work, e.g.|Zhe et al.| (2019).
To address this we formulate a stochastic variational
inference scheme, following the framework of Hensman

et al.| (2013).

5 Inference

Several parts of the model pose distinct challenges for
inference. Firstly, the covariance of f depends on both
latent variables z and the warps g, hence we can not
marginalize them out in closed form. Secondly, even
if we use point estimates for z and g (e.g. MAP), the
resulting covariance matrix would be of size JN X JN,
which is prohibitively expensive to invert. Notice, that
we cannot use Kronecker decomposition of the covari-
ance, a typical efficiency trick in multi-task GP mod-
els (Stegle et al.,2011; Dai et al.,|2017)), in the case of
misaligned or missing data. To deal with these issues,
and avoid point estimates, we adopt a sparse Stochas-
tic Variational Inference (SVI) scheme.

We wish to compute the marginal likelihood of the
data p(y |X) = [p(y|g,2)p(g|X)p(z) dz dg. This
integral is intractable as both latent variables z and
warps g appear nonlinearly inside the inverse of the
covariance matrix. To address this, we use a varia-
tional approach and introduce separable distributions
over the latent variables ¢(z) := H;.le q(z;) and warps

q(g) = H}]:1 q(g;) to approximate the true posterior

p(z,g|y,X). The log marginal likelihood can then be
bounded using Jensen’s inequality:

1ng(y | X) > IEq(z)q(g) [Ing(y | z, g)]
—KL[4(z) || p(z)] = KL[q(g) | p(g)] - (4)

The expectation is still intractable, but we can fur-
ther bound £; := logp(y|z,g) using the sparse VI
approach of [Titsias| (2009).

’In the ODE formulation of Monotonic Process,
g; | x;,w; is deterministic, however, for simplicity, we often
use g; to denote a general stochastic monotonic warp.
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5.1 Sparse Stochastic Variational Inference

To make progress, we augment our model by introduc-
ing a set of inducing variables. Consider a set of M
auxiliary variables h € RM evaluated at some artificial
pseudo-inputs [X, Z], where X € RM and Z € RM*Q,
We may then define an augmented joint distribution
as

p(y.f.h,z,g|X,X,Z) = p(y|

p(fh,z,8,X,Z)p(h|X,Z) p(g| X) p(z). (5)

-
~—

Following the approach of (Titsiasl 2009), we define
a sparse approximation to the posterior distribution
over f using the inducing variables. Omitting the de-
pendence on X for clarity, the exact posterior over f
in the augmented model can be described by the pre-
dictive Gaussian distribution

p<f\y,g,z>=/p<f\h,y,g,z>p<h|y,g,z> dh. (6)

Suppose that h is a sufficient statistic for f, mean-
ing that for any new inputs [X*,Z*] and the corre-
sponding function values f*, we have f* L f|h or
p(f* | h,f) = p(f* | h). Similarly to Titsias| (2009) (see
supplement for more details), it follows that we can
drop the dependence on y in the posterior such that
p(f|h,y,g,z) = p(f|h,g,z). Under this assumption,
we can write an approximation to the exact posterior
in (6) as ¢(f) = [ p(f|h,g,z) q(h)dh, where we spec-
ify that g(h) := N'(h|my,Sy). The variational distri-
bution over f and h is then ¢(f,h) = p(f | h, g, z) q(h).

Now, using the augmented model and the variational
distribution ¢(f,h), we can write the lower bound on
L1 as
Ly =logp(y|zg)
f)p(h
= tog [ p(rin. 2. g)am) X2 anag
q(h)
> L2~ KL[q(h) | p(b)] ,

£ai= [aw)| [ p(e1,g.2)logaly [£)d

(7)

f} dh .

While it is possible to “collapse” the distribution
g(h) by finding its optimal parameters (Titsias and
Lawrence, [2010), we choose to follow the stochastic
VI approach of Hensman et al.| (2013) and keep the
explicit representation of the inducing variables.

After marginalizing out f and h in the £5 term of @,
please see the supplement for detailed derivation, the

overall lower bound £ < log p(y) takes the form

J
L= Z{ a(z)a(ey) 108 N (v, | Kp,nK;ym, 57)
j=1

; g ([25]] = KL]a(z;) | p(z;)]  (8)

~ KL[alg)) | ple;)] | — KL[a(h) | p(n)],

Tr[A; S] —

where we have matrices A; := BK}:,%thijth,;}
and ¥; ==Ky, r, — K73, K} Kpy,. The bound is fac-
torised over sequences; combined with the separable
kernels, we only need to compute the following ex-
pectations E, a(z:) ) [K(25,2)], Eqa) [ K (Z,2;)K (z],Z)],
Ey(e)) [K(gj’ X)} and E,(g;) [K(X7 g;) K(g;, X)] - In
general, these can be approximated with sampling; the
expectations under ¢(z) can be computed analytically
for some kernels, e.g. the squared exponential.

Using sparse VI, the GP methodology allows for the
Bayesian treatment of latent variables and warps, as
well as reducing the time complexity to O(JNM?).
Stochastic VI adds the possibility of further complex-
ity reduction through training using mini-batches of
tasks.

5.2 Efficient SVI for Monotonic Warps

Calculation of requires taking expectations over
the warps under the approximate posteriors {q(g;)}.
We estimate this bound by drawing samples from the
respective monotonic processes. In Sec. @ we out-
lined the sampling procedure as drawing a function
sample from each GP posterior w§-5)(-) and then solv-
ing the initial value ODE to obtain samples from
g;(g;). As the inputs are unknown a priori, we fol-
low |Ustyuzhaninov et al.| (2020) and |Hegde et al.
(2019), and specify the field using a sparse varia-
tional GP (Titsias, 2009). For each sequence, we de-
fine inducing locations Uj and pseudo-outputs v;, and
learn an approximate variational posterior ¢(v;) =

N(vj|my j,Sw;)-

As the warps are smooth, we found it most efficient
to solve the ODE using a simple Euler stepping ap-
proach with 10 steps over T € [0,1] taking gradients
with respect to the variational parameters and ker-
nel hyperparameters. The solver requires the sequen-
tial evaluation of a single functional sample w§-8) () at
arbitrary locations. Standard approaches would re-
quire all inputs to be known and a large covariance
factorised. Instead, we make use of an efficient approx-
imation scheme using path-wise samples from (Wilson
et al., [2020). We combined Matheron’s Rule with a
weight-space approximation to sample from the prior
using random Fourier features (Rahimi and Recht|
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2008]). These samples may then be conditioned on the
inducing-locations and samples from their correspond-
ing pseudo-output distributions. Let €2; be a set of
F random Fourier features for the kernel with hyper-
parameters w; and b; be a set of draws from a uni-
form distribution over [0,27) such that ©;,b; € RF.
Then ¢;(u) := /20.,/F cos(2ju + b;) defines a fea-
ture space such that K, (u,u’) = ¢ (u) ¢;(u'). If we

)

draw samples a(®) ~ N(0, Ir) and v§-s ~ ¢(v;) then

wl? (u) == ] (u) a®) + B(u) , 9)
Blu) = K, (u, ;) K1, 1) (v = 6] (1)) a)

gives a single functional draw of w;s) (+) for arbitrary w.
(
J
we efficiently solve for samples g
O(N).

s) during the ODE solver loop,
(s)

J

Thus, fixing a®) and v

with complexity

When modelling monotonic warps g as proposed, i.e.
via ODE with variational GP drift, in eq. (8), ¢(g;)
is replaced with p(w;|v;)¢(v;) and the corresponding
KL divergence term becomes KL[g(v;) || p(vj)]

5.3 Learning

Training alternates two steps: (1) using natu-
ral gradients for the wvariational distributions of
the inducing variables ¢(h) = N(h|my,Sy) and
q(vj) = N(vj|my;,Sy, ;) (see Hensman et al.
(2013) for details); and (2) estimating ¢(z;) =
N(zj|m, ;,diag(s, ;)) alongside the noise precision 8
and kernel hyperparameters 6, {w;} using the Adam
optimizer (Kingma and Bal 2014). We fix the la-
tent space lengthscale and variance hyperparameters
1 to 1 to avoid excessive parameterization and ini-
tialise the latent variables z using linear PCA. We use
the GPflow framework (Matthews et al|2017)) and the
GPflowSampling path sampling toolkit (Wilson et al.|
2020). The code is available onlineﬂ

6 Experiments

To show that multi-task GP learning and inference
benefits from alignment, we compare our AMTGP
model against a version without the alignment func-
tionality, denoted MTGP. MTGP can be seen as a fully
Bayesian version of Latent Variable Multiple Output
Gaussian Processes (Dai et al.|[2017). To illustrate the
benefits of marginalising out the warps, we also add re-
sults for the aligned model using point MAP estimates
for the warps as in GP-LVA (denoted M-AMTGP).
The MAP estimates are obtained by optimising a set

3See [B.3|in the supplement for details
‘https://github.com/0lgaMikheeva/aligned_mtgp

of auxiliary variables (constrained to be monotone) un-
der a GP prior as proposed by GP-LVA (Kazlauskaite
et al |2019). We also make comparison to GP-LVA.

We evaluate AMTGP on synthetic data as well as
three real datasets: dynamic emotional facial ex-
pressions (Livingstone and Russo, [2018), heartbeat
sounds (Bentley et al., 2011)), and respiratory mo-
tion traces (Ernst, [2011) (please see the supplement).
We perform a quantitative evaluation on the task of
predicting missing data in three scenarios: (S1) data
missing at random, (52) a continuous segment of data
missing at the same location for all tasks, and (S3)
continuous segments of data missing at different lo-
cations for each task. The performance of the two
approaches is compared using both the standardised
mean squared error (SMSE) and the standardised neg-
ative log probability density (SNLP) (Williams and
Rasmussen), 2006). The results are presented with
statistics over 10 random data amputations. For all
experiments, a Matérn 5/2 kernel is used for the warp
differential field GP prior. For fair comparison, the
number of inducing points for each model is chosen
from the ELBO for the full dataset.

Synthetic Data We generate synthetic data by tak-
ing two 1-D functions and applying five random mono-
tonic warps to each, adding i.i.d. Gaussian noise, to
produce ten misaligned tasks. Missing data prediction
performance is compared across the tasks in the three
scenarios S1 - S3; 20% of the full data were removed
and an SE kernel used. The results are summarised
in Table [I] and Fig. 2] The latent variable posterior
distribution (Figs. [2(a)l(g)) shows that AMTGP and
GP-LVA correctly identify the two underlying groups
of tasks and that MTGP is unable to detect corre-
lations between misaligned versions of the same task.
The unaligned MTGP result (Fig. does not share
information correctly and over-fits, resulting in large
error bars and poor test performance. Whilst the M-
AMTGP aligns the data and improves the mean, the
point estimate of the warp is overconfident. With the
full marginalisation of the warps, AMTGP is able to
both align correctly and model the uncertainty accu-
rately (Fig. resulting in improved performance
for both SMSE and SNLP. Notably, in the scenarios
with missing segments, S2 and S3, GP-LVA has very
poor uncertainty estimation, confirming the detrimen-
tal effect of pseudo-observations on missing data re-
construction.

Facial Expressions We also test our method on
a dataset of dynamic emotional facial expressions
RAVDESS (Livingstone and Russo, 2018). This
dataset contains recordings of people saying a short
phrase with different emotions. We use mouth land-
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(d) GP-LVA Z

(f) GP-LVA missing data examples

-

' /\A

(g) AMTGP Z

(h) AMTGP function posteriors (aligned)

(i) AMTGP missing data examples

Figure 2: MTGP %) row), GP-LVA (middle row) and full AMTGP (bottom row) results on synthetic data for missing

data scenario S3. |(a)l

@ and |(g)| show log-scaled posterior over the latent space. and show posterior over

f with 20 uncertainty bars. |(g)} |(f)| and |(i)] show the data and corresponding predictive distributions for two examples

from the two different groups of tasks; this clustering is correctly identified by AMTGP. Data points shown in black
are the missing values and plots are vertically offset for clarity. MTGP has to introduce large error bars to account for
the missing data@ and, while it aligns correctly, GP-LVA becomes overconfident in contrast, full AMTGP correctly
accounts for the uncertainty in the warps and accurately models the missing data distribution

Table 1: Results on the Synthetic Data.

S1 S2 S3

Train Test Train Test Train Test
MTGP (SMSE) 0.0069 + 0.0003 0.0102 + 0.0009 0.0072 %+ 0.0006 0.1573 £ 0.0624 0.0068 + 0.0002 0.157 =+ 0.0663
GP-LVA (SMSE) 0.0082 £ 0.0004 0.0112 £ 0.0008 0.0085 =+ 0.0009 1.3053 4+ 1.0803 0.0086 + 0.0024 0.1123 + 0.0727
M-AMTGP (SMSE) 0.0061 &+ 0.0002 0.0097 £+ 0.0009 0.0066 £+ 0.0006 0.0534 £ 0.0181 0.0062 + 0.0001 0.0528 £ 0.0235
AMTGP (SMSE) 0.0076 &+ 0.0002 0.0099 + 0.0007 0.0079 + 0.0007 0.052 £ 0.0193 0.0076 + 0.0002 0.058 =+ 0.0235
MTGP (SNLP) -1930.7 £ 13.5 -456.4 + 7.6 -1919.8 £ 32.4 -258.5 + 52.4 -1935.7 £ 11.2  -167.1 £ 724
GP-LVA (SNLP) -1840.6 + 19.7 -399.7 + 16.0 -1806.4 + 41.4 14232.6 + 12776.9 -1810.5 £ 74.5 1115.6 + 1126.2
M-AMTGP (SNLP) -2024.9 + 10.3 -460.7 + 11.8 -1997.0 £ 34.5 -181.6 = 128.3 -2015.7 £ 8.1 -61.9 £ 242.2
AMTGP (SNLP) -1836.0 + 11.8 -442.0+ 74 -1826.6 + 36.6 -245.4 + 92.7 -1812.3 £ 18.5 -156.3 £ 141.3

mark coordinate sequences extracted from the data,
share warping functions across all coordinates from
each recording, and use a Matérn5/2 kernel. We use
two instances of the same phrase by the same per-
son and ten mouth coordinates. Scenario S2 with
10% signal removal is employed on one instance and
the other left intact. Both models are able to group
lower and upper lip coordinates in each recording,
but AMTGP also detects the similarity across record-
ing instances, resulting in only two final clusters
(Fig. . The missing data prediction of AMTGP

is influenced by the behaviour of the other observed
instance (Fig. [3(f)), while MTGP is unable to use this
information resulting in phase errors (Fig. [3(c)).

Heartbeat Sounds We also consider sequences
of heartbeat sounds recorded by a digital stetho-
scope (Bentley et al., 2011). A normal heart sound
has a clear “lub dub, lub dub” pattern that varies
temporally depending on the age, health, and state of
the subject. The models are tested in scenario S1 with
20% missing data, a Matérn 5/2 kernel is used, and the
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a) MTGP Z

w

-

(
(d) AMTGP Z

(e) AMTGP function posteriors (aligned)

(f) AMTGP missing data examples

Figure 3: Experiment on the facial landmark data. Red and orange hues are the upper lip coordinates in 2 recordings,
green and blue are the corresponding lower lip coordinates. Top row shows MTGP and the bottom row is AMTGP.
and show one lower and one upper lip point for each recording. In contrast to AMTGP, the predictions under

MTGP are out of phase with the missing data.

Table 2: Results on Real Datasets

Facial Expressions

Heartbeat Sounds

Train Test Train Test
MTGP (SMSE) 0.0027 £+ 0.0001 1.8327 + 2.9569 0.0329 + 0.0038 0.0544 + 0.0103

GP-LVA (SMSE) 0.0216 + 0.0021 0.5166 + 0.4626 - -
M-AMTGP (SMSE) 0.0018 + 0.0001 0.8172 4 1.6459 0.0138 + 0.0005 0.0284 + 0.0138
AMTGP (SMSE) 0.0059 £+ 0.0002 0.6686 4+ 1.1964 0.0181 + 0.0014 0.0276 £ 0.0046
MTGP (SNLP) -3469.7 + 30.0 89.5 £+ 228.5 -1674.0 £+ 41.3 -378.4 + 25.1

GP-LVA (SNLP) -2472.2 £ 57.8 86.3 £ 119.9 - -

M-AMTGP (SNLP) -3803.6 £+ 46.0 -44.5 + 35.4 -2231.1 + 21.2 -489.1 £+ 65.9
AMTGP (SNLP) -2910.4 + 48.4 -56.4 + 42.3 -2006.6 £+ 36.5 -466.5 £+ 21.6

results are presented in Table 2] As indicated by the
latent space posterior (figures provided in the supple-
ment), AMTGP uncovers correlations within groups
of “lubs” and “dubs”, resulting in better predictive
performance.

7 Conclusion and Limitations

AMTGP performs multi-task learning under GP priors
that address the problem of temporal noise or warping
in time-series data; it extends existing work on multi-
task GPs to the case of warped inputs. We derive the
variational bound, leveraging SVI and path-wise sam-
pling for efficient fully Bayesian inference. We provide
multiple examples to confirm the intuition that tem-
poral alignment can and should be treated as an inte-
gral part of a multi-task model. We show, that while
modelling uncertainty in the warps is not critical for
alignment, it is beneficial when making predictions far

from existing data, when MAP can be over-confident.
Monotonic warps are natural for time-series, however,
other domains, e.g. spatial or image, other transfor-
mations may be more appropriate, e.g. rotations or
translation. Our approach could be extended to in-
fer the parameters of some other transformation func-
tion. Whilst modelling the warps adds a computa-
tional overhead, our efficient path-wise approach en-
sures a linear scaling in N. In practice, differentiating
through the ODE solver is currently the main limit-
ing factor. That said, the lack of Kronecker form also
introduces extra complexity linearly in J. Those limi-
tations will be considered in future work.
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Figure 4: Generative model of AMTGP. The observed variables are shown in grey. The latent variables g are the warps
that map the inputs x to the aligned input values. The latent variables z encode the inter-task correlations.

B Derivations

B.1 Sufficient Statistic Assumption

Following |Titsias| (2009) we can compute the predictive posterior at the new locations [X*, Z*] using the aug-
mented joint:

p(f* |y, g, 2, X", Z*) = /p(f*,f,h|y,g,z7X*,Z*)dfdh (10)

- / (£ | £.h, 8,2, X", Z°)p(f | b,y g, 2)p(h | y, g, 2) df dh

Let us assume that h is a sufficient statistic for f, meaning: £* L f|h or p(f* |h,f) = p(f*|h). Thus we have,
p(f*|f,h, g, z,X*, Z*) = p(f* | h, g, z, X*, Z*).

Due to the assumption and the fact that y is a noisy version of f, it follows that

£ £ hy|g z)df
P hy.8,2) = f}{(];(s,f,myyg,gz) o'ffdf*
~ [ply|f)p(f*,f,h|g, 2)df
[y |f)p(*, £, h|g,z)df df*
~ [ply|f)p(f* | h,g,2)p(f | h,g,z)p(h|g, z) df
~ [p(y | £)p(f* | h,g,z)p(f |h, g, z)p(h | g, z) df df*

p(y |h,g,z)p(f*,h|g,z «

s Ta T g =T g

(11)

Hence, p(f|h,y, g, z) = p(f | h, g, 2).
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B.2 [, Bound

Lo is defined as Lo = [q(h)p(f | h, g, z)log p(y | f) df dh, where ¢(h) := N(h|m,S). Marginalising out f we get
L= / a(b)p(£ | b.g.2) logp(y |£) df d (12
—Eyy| [ o(f] b 2)logaly ) de| (13
3 JN 1 _ B
=Eqm) { - 5(}’ )y —p) - - log 2m — 3 log |37 1| — ETV[ZH (14)
where p = K, K; 'h and ¥ := K;; — K, K Ky
Taking expectations under the distribution ¢(h) we arrive at the final result:
J 1 3
Lo = ; { log N (y;j | Ky, Kjim, 7'T) — §Tr[Aj S] — §Tr[zj]} (15)

where the matrices A; := 8K Kz, Ky, K;, and & := Ky, r, — K7, K;  Kay, .
B.3 Bound for Monotonic GP warps

Here we provide the derivation of the bound when modelling monotonic warps via ODE with variational drift
GP. In this case, g; = g,;(w;,x;). Joint augmented distribution is

J N
p(y7f7 haszale) flh Z g ’U) X H w] |VJ )p(Zj) Hp(yjn ‘ f]") (16)
j=1 n=1

The approximate posterior is ¢(f, h, z, w,v) = p(f | h, z, g(w, X)) ¢(h) szl p(w; | v;)aq(v;)q(z;) .
ELBO is then derived as follows

p(f| b zgtw; X)) p(h) [T7_, plerAvi) p(v;) p(z;) TTny PWin | fin)
p(f [ zgtw; X)) g(b) [T)_, pleAvs) a(vs) a(z;)

J

=3 (Bgtenm [ogp(y; 1£)] = KL[a(v) [ p(v,)] = KL[a(z;) | p(2;)] ) = KL[a(h) | p(b)] ~ (18)

1ng(y | X) Z]Eq(f,h,z,ww) [log ‘| (17)

<.
—

J
IR |
D (Bates) ptus 1v5) 00w [108 N (3 K g K, 8711) = STrA, 8] gTV[Eﬂ] (19)

<.
—

— KL[q(v) [Ip(v;)] — KL]a(z;) IIP(Zj)]) — KL[g(h) || p(h)] (20)
B.4 M-AMTGP: MAP estimate of the warps

For comparison, we include a version of AMTGP where we consider only a point MAP estimate for the monotonic
warps following the GP-LVA approach (Kazlauskaite et al.l [2019)).

We parameterise each g; through a set of auxiliary variables e; € RY and enforce monotonicity as follows:
n
Gin = Z [softmax(ej)]i , (21)
i=1
under a Gaussian process prior over the values of g;. This re-parameterization ensures that the warps are
monotonic over the specified range [0, 1]. We also add a scale and a shift parameter to map this to the range of
the input space.
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(b) MTGP function posteriors (unaligned) (¢) MTGP missing data examples
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Figure 5: Experiment on the heart beat data. Top row shows MTGP, middle row is M-AMTGP (AMTGP with MAP
estimate of warps), bottom row is AMTGP. “Lubs” and “dubs” are plotted with red and blue respectively. The right
column shows one “lub” and one “dub”. 20% of the data is missing at random locations and is shown in black.

B.5 GP-LVA: extension to missing data

The original GP-LVA (Kazlauskaite et al., 2019) was not designed for missing data reconstruction. However, it
is possible to use predictive posterior of individual sequences conditioned on both observed data Y and pseudo-
observations S. While conditioning on S allows for implicit correlation between aligned sequences, it can cause
the model severely misbehave. In some scenarios, we found the pseudo-observations to overpower the data,
resulting in poor fit to Y.

C Additional Experiments and Plots

C.1 Heartbeat Data

Figure [5| shows results on the Heartbeat data. Details about the data are presented in the main paper. In this
experiment, we omit the results for GP-LVA, since we could not achieve a good fit from this model even with
no data missing. In particular, GP-LVA aligned pseudo-observations of both ”lubs” and ”dubs” together in one
single category. This resulted in GP-LVA fitting the data Y well only on one category and severely misfitting on
another. This clearly shows the downside of pseudo-observations trick.

Figure |§| shows posterior warps on the heartbeat experiment (the shift is removed, one of the warps is set to
identity mean). As we can see, the necessary alignment is more complex than a simple shift or scale. This
illustrates the need to flexibly model temporal warps in the real data.

C.2 Respiratory Motion Traces

We perform additional experiments on physiological data (Ernstl 2011]). Specifically, we consider recordings of
human liver motion traces. We use 6 markers of liver positions (3 external data and 3 from ultrasound). In this
data the misalignment is small and comes from physiological processes.
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Figure 6: Posterior warps on heartbeat data.

Table 3: Results of the additional experiments.

Respiratory motion traces (liver) Facial Expressions 2

Train Test Train Test
MTGP (SMSE) 0.0084 + 0.0047 0.1787 + 0.1443  0.0726 4+ 0.006  0.2681 + 0.0997
GP-LVA (SMSE) 0.0362 &+ 0.0024 0.3075 £+ 0.3214 0.0479 £ 0.0088 0.1804 + 0.0614
M-AMTGP (SMSE) 0.001 =+ 0.0005 0.1663 £+ 0.1370 0.0436 £ 0.0072 0.1785 + 0.0753
AMTGP (SMSE) 0.0083 £ 0.0021 0.1919 £ 0.1533 0.054 =+ 0.009  0.1666 + 0.0941
MTGP (SNLP) -1215.1 £ 95.1 -71.8 £ 229 -1885.2 £ 55.0 -100.7 £ 41.3
GP-LVA (SNLP) -916.7 £ 20.0 83.8 + 108.3  -2445.9 + 106.2 71.5 + 41.6
M-AMTGP (SNLP) -1788.2 4+ 98.1 435.7 &+ 536.3  -2310.2 £+ 107.6 -112.8 £ 60.3
AMTGP (SNLP) -1210.4 £+ 59.5 -43.6 £ 46.1 -2031.6 £ 1014 -131.1 £ 63.1

We perform an experiment where 10% of the data is missing in S3 scenario (continuous segment of data is missing
in each task at random locations). Since the data clearly exhibits periodic behavior, we use a sum of a cosine
and a squared exponential kernel to model the temporal behavior.

Results are presented in Table [3] and Figure[7] As we can see, all 3 models show similar predictive performance
in terms of SMSE. This is due to the fact, that the data has only small misalignment and the correlated
tasks exhibit strong periodic behaviour. Importantly, alignments in the proposed AMTGP model and its MAP
version, M-AMTGP, do not lead to spurious correlations and negative knowledge transfer between the tasks.
The predictive log probability (SNLP) in this experiment once again highlights the effect of Bayesian warp
estimation, compared to MAP estimation. M-AMTGP if overconfident in its predictions, while fully Bayesian
AMTGP preserves reasonable prediction uncertainty.

C.3 Extra Experiment with Facial Expression Data

Here we present an additional experiment on the facial expressions data. For this experiment, we consider two
mouth coordinates (lower and upper lip) and 14 recording instances yielding 28 tasks. We learn one warping
function per instance and use scenario S3 (continuous segment of data missing at random location for each task)
with 10% of the data removed.

The results of the experiment are presented in Table 3] and Figure [§]] We can see, that unlike MTGP, both
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Figure 7: Experiment on the liver data. Top row shows MTGP, middle row is M-MAMTGP (AMTGP with MAP estimate
of warps), bottom row is AMTGP. The right column is plotted with an offset for better visibility. 10% of the data is
missing in continuous segments at random locations in each task and is shown in black.

AMTGP and M-AMTGP are able to align and group lower and upper lip coordinated. This is reflected in better
predictive performance (table [3]) of the aligned models, with fully Bayesian AMTGP being the top model.

C.4 Sequence Alignment

Our model can be used not only for misaligned multi-task learning, but also for sequence alignment. In this
aspect, our model, Aligned-MTGP can be seen as a more probabilistically solid formulation and generalization
of the GP-LVA model (Kazlauskaite et al. [2019). Here we compare the quality of alignments between GP-LVA,
M-AMTGP and AMTGP on four synthetic datasets with known warps from [Kazlauskaite et al.| (2019). Since
GP-LVA and M-AMTGP only give point estimate of the warps, we use posterior warp means in AMTGP for
comparison. As the task of alignment is underdetermined, to compare the warps we consider relative warps
withing each group (one true underlying function). In Table |4 we report the MSE between the true warps and
the estimated warps with statistics over different reference warp choices. The the identity warps (i.e. unaligned)
are shown as a baseline. We can see that our method uncovers the true warps on par with GP-LVA while also
providing a rigorous formulation of the model and the bound for the inference.

The synthetic datasets for testing warps have 10 sequences each. Generating functions are shown in Table [
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Figure 8: Experiment 2 on the facial landmark data. Top row shows MTGP, second row is GP-LVA, third row is M-
AMTGP (AMTGP with MAP estimate of warps), bottom row is AMTGP. (a), (d), (g) and (j) show the latent space, (b),
(e), (h) and (k) show the posterior over the aligned functions. Data fit is illustrated in (c), (f), (i) and (1) for a few tasks.
10% of the data is missing and is shown in black. Offset and colour coding separates upper and lower lip coordinates.

Table 4: Warp Recovery on Synthetic Data.

Identity Warps GP-LVA M-AMTGP (Ours) AMTGP (Ours) Functions
1 0.061 £ 0.09 0.0042 £ 0.0070 0.0017 £ 0.0026 0.0050 & 0.0064 sinc(mz); 0.62% (5/5)
2 0.061 £ 0.09 0.0025 £ 0.0036 0.0024 £ 0.0036 0.0046 + 0.0081  sin(wz); 0.62° (5/5)
3 0.035 £ 0.03  0.0076 + 0.0010 0.0055 £ 0.0088 0.0052 £ 0.0086 sin(3z); 0.62% (5/5)
4 0.080 £ 0.09 0.0006 + 0.0008 0.0004 £ 0.0004 0.0006 + 0.0011 sin(6z) (10)

D Model Parameters and Implementation

D.1 Model and Training Parameters

For all experiments, the number of inducing points for each model is chosen based on the saturation of ELBO
for the full dataset (see Table |5)). This ensures that the performance is not affected by the quality of sparse
approximation. As a result, the aligned models (AMTGP and M-AMTGP) require fewer inducing points.

For the inference over monotonic warps in AMTGP model we use 10 inducing points on a fixed grid for each
warp function.

The details about the size of the dataset used in each experiment is provided in Table [6]
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Modeling choices are summarized in Table [7}

For optimization we use a combination of Adam and natural gradients. We use natural gradients for ¢(h) with
~n, = 0.5 for all models and experiments. While it is possible to use natural gradients for parameters of g(w)
(underlying GPs in warps), we find that ~,, in this case has to be very low and does not improve convergence
compared to Adam for those parameters. In synthetic data experiments, we use natural gradient for the warps
with ~y,, = 0.05, in real data experiments we use Adam.

The number of the training iterations for each experiment was determined based on the loss convergence and is
reported in Table [7]

For all experiments, we train all models on 10 random data amputations and report mean and standard deviation
of SMSE and SNLP.

Table 5: Number of Inducing Points.

MTGP M-AMTGP AMTGP GP-LVA (per task)

Synthetic data 250 50 50 25

Facial Expressions 200 200 100 20
Heartbeat Sounds 200 100 100 -

Facial Expressions 2 250 50 50 20
Respiratory Motion Traces 100 100 100 10

Table 6: Dataset size.

# tasks Sequence length Total # of data points

Synthetic data 10 100 1000

Facial Expressions 20 65 - 70 1350
Heartbeat Sounds 10 120 - 150 1368

Facial Expressions 2 28 56 - 70 1704
Respiratory Motion Traces 6 100 600

Table 7: Model parameters and training details.

Temporal kernel # warp functions Warp prior in M-AMTGP Training iterations

Synthetic data SE 10 SE(0.1, 0.1) 2000

Facial Expressions Matern5/2 2 SE(0.1, 0.1) 2000
Heartbeat Sounds Cosine + SE 10 SE(0.1, 1.) 3000

Facial Expressions 2 Matern5/2 14 SE(0.1, 0.1) 2000
Respiratory Motion Traces Matern5/2 6 SE(0.1, 0.01) 3000

D.2 Implementation Details

The model is implemented in Tensorflow. We make use of the GPflow framework (Matthews et al., [2017) and
the GPflowSampling path sampling toolkit (Wilson et al., 2020)).

The code is available at https://github.com/0lgaMikheeva/aligned_mtgp.

D.3 Computational time

Approximate computational time for each experiment in provided in Table [§] The estimate is provided for a
MacBook Pro with 2,7 GHz Quad-Core Intel Core i7 and 16 GB memory.

Higher computational time of AMTGP comes from the ODE solver. While extra evaluations of the sampled
functions within the solver add to the complexity, most of the computational overhead comes from differentiating
through the solver. We illustrate this in Table [0
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Table 8: Approximate computational time, in minutes

GP-LVA MTGP M-AMTGP AMTGP
Synthetic data 1 5 5 60
Facial Expressions 1 5 5 60
Heartbeat Sounds 1 5 5 60
Facial Expressions 1 5 5 60
Respiratory Motion Traces 1 ) 5 60

Table 9: Analysis of computational time of AMTGP (average time per iteration, sec.)

# samples # Fourier Features Pathwise GP sampling Pathwise monotonic GP sampling Backprop
1 1024 0.00102 0.00606 0.03842

1 256 0.00077 0.00442 0.02084

10 1024 0.00120 0.05216 0.38295

10 256 0.00080 0.01284 0.08918

100 1024 0.00190 0.68137 3.87087

100 256 0.00104 0.15722 0.93967
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