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1 Introduction and motivation

The widespread adoption of machine learning has created a pressing need for data efficient,
interpretable models with efficient inference schemes. At the same time, a profusion of data sources
demands an accounting for relationships between, often heterogeneous, data both within and across
datasets. These challenges are particularly faced in the context of unsupervised learning; we would
like to derive a (latent) description of the observed data that is both generative (recreates the data)
and efficient (shares information between the observations).

In this work we propose to build upon recent work that demonstrates the success of Gaussian Process
(GP) Bayesian non-parametric approaches to generative models for unsupervised learning [4, 3]. Such
models perform well when a structural grouping of the observed data is known a-priori. However,
we are often unable to specify this structure a-priori and wish to infer it directly from the data. Our
work combines these GP models with a non-parametric clustering Dirichlet Process (DP) model in
order to determine these structural groupings during learning in an efficient manner; this removes
the need to specify structural relationships in advance and have them inferred from the data.

We refer to our model as GP-DP which has the contribution of simultaneously providing a generative ex-
planation of all the observed data with a mechanism to ensure information sharing in an efficient manner.
Our work demonstrates that structured probabilistic dependences between observed data can be recov-
ered in the context of unsupervised learning that provide an explicit, interpretable generative model.

Existing models using GPs and DPs There are other models that have combined elements of GPs
with DPs. For example, a mixture of GP experts addresses two of the major problems with GPs: the
inverse of the covariance matrix (O(n3)) and stationary kernels. An infinite mixture of GP experts
uses a DP to determine the number of components. The pertinent works that have implemented infinite
mixture of GP experts by utilizing a DP are [7] and [9]. In addition, [5] combines a DP and GP for
the purpose of clustering time-series data streams. However, as with the mixture of GP experts, their
model serves a different purpose than our own.

2 Latent structure learning with the Bayesian GP-LVM and DP

The Gaussian Process Latent Variable Model (GP-LVM), as defined in [6], is an extension to the
standard GP model, used for regression, that targets unsupervised learning. With the GP-LVM the
input to a GP is unknown and is treated as a continuous latent variable. The Bayesian GP-LVM, as
defined in [4], marginalizes these latent variables in order to learn the true latent dimensionality of
the observed data. A kernel with automatic relevance determination (ARD) weights, as defined in [8],
is used to determine the latent dimensionality. When an ARD weight approaches zero, that latent
dimension is unnecessary and may be safely discounted from the model.

When the standard GP-LVM is trained via a maximum a posteriori approach, i.e., the latent variables
are simply given a prior distribution, none of the latest dimensions will be reliably shut off; the
GP-LVM will utilize all the latent dimensions as provided. Therefore, we implemented the Bayesian
GP-LVM as part of our model.
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Figure 1: Our GP-DP Model. The Bayesian GP-LVM (of the same form as the MRD model) explains
the observed data Y via the addition of noise β to a function F of latent variables X where both F
and X are marginalized out via a variational approximation that makes use of “inducing points” U,
Xu [4]. The DP ensures that the hyperparameters used in the GP mapping (from X to F) come from
a fixed set of clusters of unknown size. The hyperparameter and noise (σ2

f ,γ,β) clusters are allocated
to the dimensions of F via the multinomial distribution for Z.

The Bayesian GP-LVM has been extended to learn a structured relationship between specified groups
of observed dimensions, termed “views” in the form of the Manifold Relevance Determination (MRD)
model [3]. Here, each view is considered as a separate version of the Bayesian GP-LVM but with
a common, shared latent space. By using kernels based on ARD weights, views can choose to share
information (select common latent space dimensions), become independent (select unique latent space
dimensions), or some combination of the two. This provides structured unsupervised learning where
we infer the relationships between the latent spaces that generate all the observed data.

The GP-DP model Our model is capable of learning a low dimensional manifold that explains the
high dimensional observed data while simultaneously learning a structured latent space that specifies
both the number of views and the clustering of the observed data into the appropriate view. The
DP ensures a sparse representation by acting to reduce the number of possible views which in turn
encourages information sharing.

The GP-DP is essentially an extension to MRD with a new view for each output y-dimension but
a limited number of groups. It would be similar to treating each y-dimension as its own view and
performing MRD then clustering the resulting ARD hyperparameters to limit the number of kernels.
However, as the model is trained with a single objective function, GP-DP is less complex than MRD
with unknown views and clustering afterwards. The graphical model for GP-DP is captured in Figure 1.
We now describe the Bayesian GP-LVM and DP components of the model.

The Bayesian GP-LVM We construct the main generative portion of the model using the standard
Bayesian GP-LVM for independent and identically distributed data [4]. We assume the observed, high
dimensional, noisy data (Y∈RN×D) lies close to a manifold of much lower dimensionality (Q), such
that Q�D [6]. We assume independence across dimensions of Y, the “output” or “observed” space.

The latent variables, X∈RN×Q capture the locations on the manifold of the observed data Y. A unit
Gaussian prior is placed on the latent variables: xn ∼N (0,IQ). We assume a non-linear function
from the latent space to the observed space and apply a GP prior. The output of this function is defined
as F, where F∈RN×D and fd(X)∼GP(0,k(X,X′)| γ,σf

2). The observed data Y is defined by a
GP with a mean of F and a noise precision β∈R≥0. Therefore, yd∼N (fd,β

−1IN ).

The hyperparameters for the Bayesian GP-LVM are the ARD weights and the signal variance,
which are defined as γ∈ R≥0

Q and σf
2 ∈ R≥0, respectively. For our model the values of these

hyperparameters are allocated by the DP.

In order to marginalize out the latent variables, using variational approximate inference, inducing
points are introduced that are assumed to be sufficient statistics to approximate the true function [4].
M inducing inputs (Xu ∈RM×Q) and outputs (U∈RM×D) are used where we take M �N . The
“pseudo function outputs” U are defined similarly to F such that ud(Xu)∼GP(0,k(Xu,X

′
u)| γ,σf

2).

The Dirichlet Process We construct the DP portion of the model using the stick-breaking representa-
tion [1]. Four infinite sets of independent random variables are drawn as: (i) an infinite number of inde-
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pendent stick lengths, Vi∈ [0,1],i={1,2,···}, are drawn from Vi∼B(1,α); (ii) hyperparameters for the
GP-LVM, {γi,σ

2
f,i,βi},i={1,2,···}, are drawn from their respective base distributions. Thus we have

γ∼Γ(aγ ,bγ),σf
2∼Γ−1(aσ2 ,bσ2),andβ∼Γ(aβ ,bβ) . (1)

The infinite vector of mixing proportions is defined as πi(V)=Vi

∏i−1
j=1(1−Vj), and the assignment

of a specific sample (in our case a dimension of Y) is sampled from a multinomial distribution with
probabilities π(V) as Zd∼Mult(π(V)) [1]. The scaling parameter, α∈R≥0, acts as a prior on the
number of groups; as α increases the DP allows the data to create more groups. We marginalize α
with a broad prior, α∼Γ(a0,b0), as recommended in [1].

The hyperparameters and noise precision for the GP-LVM {γ, σf
2, β} are assigned by the DP. Given

the assignment variable Z for a specific dimension of Y, the corresponding set of hyperparameters
are assigned to the appropriate GP for the y-dimension. This provides

fd(X)∼GP(0,k(X,X′)|γ[Zd=i]
i ,σf

2[Zd=i]
) (2)

yd∼N (fd,β
−[Zd=i]
i IN ) . (3)

Training We train our model with a single objective function. This ensures that the low-dimensional
manifold, the assignment of observed data into appropriate views, and the latent space structure are
learned simultaneously. We utilize mean-field approximation when performing variational inference;
thus, the variational distributions are fully-factorized.

The truncated stick-breaking representation of a DP mixture, as proposed in [1], is used to define
the variational evidence lower bound (ELBO) of the DP. We introduce two variational distributions
q(V) and q(Z), which are beta and multinomial distributions respectively [1]. These distributions
are truncated at T , which is a free parameter, rather than allowed to extend to infinity. In order to place
a prior on α, we also introduce a variational q(α) using a Gamma distribution.

The ARD based exponentiated quadratic kernel is used for the Bayesian GP-LVM so the Ψ statistics,
defined in [4], have an analytic expression. We introduce one variational distribution q(X), which
is a diagonal multivariate Gaussian distribution, and a set of inducing inputs to define the ELBO of
the Bayesian GP-LVM.

The objective function for GP-DP is defined in (4), where LGP is the ELBO for the Bayesian GP-LVM,
as defined in [4], and LDP is the ELBO for the DP, as defined in [1]. The other terms capture the
log-likelihood of the priors on γ, β, and σ2

f .

L=LGP+LDP+

T∑
t=1

[
logΓ(βt|aβ ,bβ)+logΓ−1(σ2

f,t|aσ2 ,bσ2)+

Q∑
q=1

logΓ(γt,q|aγ ,bγ)

]
(4)

We use a gradient based method to jointly optimize the following parameters to maximimize the
objective function L. This utilizes 2(T −1) parameters for q(V), DT parameters for q(Z), 2NQ
parameters for q(X), 2 parameters for q(α), MQ values for Xu, QT values for γ, T values for β, and
T values for σ2

f , where D is the dimensionality of the observed data, Q is the dimensionality of the
latent space, N is the number of samples, M is the number of inducing points, and T is the truncation
level for the DP. Therefore, there are (4+D+Q)T+(2N+M)Q free parameters to optimize over
for our GP-DP model.

Prediction Once the model is trained, inference is handled the same way as MRD as defined in
Algorithm 1 in [2]. We can define the split between shared and private latent spaces by comparing the
learned ARD weights to a threshold (δ) that is close to zero [2]. This is discussed further in Section 3.

3 Experiments

Our GP-DP model was tested against MRD with and without known views. By known views we mean
that the MRD was given the correct segmentation of the toy data, while without indicates that each
output y-dimension was treated as its own view. Toy data was generated from a known GP. Twenty
total draws were made with each draw having one hundred samples. The first ten draws were a function
of X:,0 and X:,1 while the second ten were a function of X:,0 and X:,2. This can be seen in the True
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Figure 2: Our GP-DP Figure 3: MRD with views Figure 4: MRD without views

ARD Weights displayed in Figures 2, 3 and 4. The observed data was corrupted with Gaussian noise
and none of the three models were given the underlying variables that generated the data.

As seen in Figures 2, 3, and 4, all three models find the correct latent structure of Y:,0:9=f(X:,0,X:,1)
andY:,10:19=f(X:,0,X:,2). Note the actual indices of the latent variablesX in the results are not impor-
tant (invariant to permutations). As we are calculating an approximate distribution for X, the indices of
the utilized latent dimensions depend on how q(X) is initialized. The number of latent dimensions used
and how they are shared and/or private between the various output dimensions are the critical factors.

Figures 2, 3, and 4 show the converged ARD weights for the various models after they have been
thresholded. As discussed in [3], an ARD weight can be considered on if it is larger than δ, which
is a small number close to zero.

4 Conclusion and future work

We have presented an extension to the MRD model where we learn the number of views and the
segmentation of the observed data into the appropriate views automatically. The proposed model
removes the need of treating each output dimension as its own view and clustering after training
the MRD model. We demonstrate our model and compare it with a toy dataset with known latent
dimensionality and shared/private structure. In the future we will test the model with a wider range
of data such as motion capture datasets.
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