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Abstract

Recent works have demonstrated that it is possible to reconstruct training images
and their labels from gradients of an image-classification model when its architecture is
known. Unfortunately, there is still an incomplete theoretical understanding of the ef-
ficacy and failure of these gradient-leakage attacks. In this paper, we propose a novel
framework to analyse training-data leakage from gradients that draws insights from both
analytic and optimisation-based gradient-leakage attacks. We formulate the reconstruc-
tion problem as solving a linear system from each layer iteratively, accompanied by cor-
rections using gradient matching. Under this framework, we claim that the solubility of
the reconstruction problem is primarily determined by that of the linear system at each
layer. As a result, we are able to partially attribute the leakage of the training data in
a deep network to its architecture. We also propose a metric to measure the level of
security of a deep learning model against gradient-based attacks on the training data.

1 Introduction
For a neural network performing image classification, can we reconstruct the training image
given its gradients, its label and the model architecture? More precisely, suppose we know
the model f (xxx;www) with parameters www that are given by either random initialisations or pre-
training. Let xxx∗ be the training image we wish to reconstruct and assume its label yyy∗ is known.
Furthermore, let L be the loss function for our classification problem. In mathematical terms,
we are interested in inverting the mapping from xxx∗ to its gradients ∇wwwL( f (xxx∗;www),yyy∗). This
mapping is far from being injective in general, which makes this problem challenging. Be-
sides being an interesting inverse problem, this problem has important implications in under-
standing the privacy risk in Federated Learning. For example, in the scenario where the local
participants have sensitive data that are not to be shared with other participants or the central
server, how can we guarantee that their data cannot be reconstructed from the gradients that
are shared during collaborative training?

A number of works have tried to solve this reconstruction problem, which we refer to
as ‘gradient-leakage attacks’. Although each of these works can perform well in specific
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situations, it remains unclear why they performed well in those situations and why they
failed in other ones. Our goal in this paper is to provide a novel framework to understand
the efficacy and failure of existing gradient-leakage attacks, so that we can get more insight
into the nature of gradient leakage in deep learning. The main insight from our work is
that the analytic method in [16] and the optimisation method in [17] can be unified under
one framework (i.e. our hybrid framework) to understand gradient leakage attacks and shed
light on the issue of gradient leakage itself. More precisely, we think the R-GAP method in
[16] is essentially solving a least square problem by picking a particular representative in the
family of solutions obtained from the Singular Value Decomposition (SVD). We claim that
the idea of gradient matching proposed in [17] can be used to choose a better representative
from the family of solutions than R-GAP. In this way, these two seemingly distinct methods
can be viewed as two consecutive steps in solving the same least square problem. We hope
that our framework to analyse gradient leakage can lead to further theoretical works on for
example, proofs of the likelihood of a successful gradient-leakage attack for a given deep
neural network.
Our contribution: Following the work in [16], we formulate the reconstruction problem
as solving one linear system at each layer, iterating backward over the entire network. The
linear system at each layer is defined by the forward and backward propagation of the target
image during training. The linear system can only be solved approximately in general due
to the size and rank of the coefficients. To reduce the approximation error of the solution,
we propose and solve an optimisation problem using the idea of gradient matching inspired
by the work in [17]: optimising the approximated solution so that the gradients of the loss
function are close to those of the loss function evaluated at the target image according to the
cosine distance function. By our formulation, the reconstruction is primarily determined by
linear systems, which enables us to estimate the vulnerability of a deep network against gra-
dient leakage attacks aiming at reconstructing the training image. We quantify this estimate
by a novel metric, which is defined as a sum of rank-deficiency of the linear system at each
layer, weighted by its position in the network. We apply our framework to convolutional
networks with the number of layers ranging from two to four, which include either randomly
initialised or pre-trained weights. The results have shown noticeable improvements over
previous works.

2 Related Work
In [17], it is shown that one can reconstruct the training image fully for a single image in
an untrained model performing classification tasks. In order to reconstruct a target image-
label pair xxx∗,yyy∗ for an untrained model with randomly initialised weights www, their method
(which was referred to by the authors as ‘Deep Leakage from Gradients’ or DLG) proceeds
as follows. Start with a randomly initialised image-label pair (xxx,yyy), minimise the L2 distance
between the gradients from (xxx,yyy) and those from the target pair (xxx∗,yyy∗) by changing (xxx,yyy).
The solution to this optimisation will be the desired reconstruction of the target (xxx∗,yyy∗).
Although this method is able to reconstruct the target image and its label in high accuracy
in some cases, it is prone to failure when we consider different target pairs or model ar-
chitectures. Also, it is unable to handle pre-trained models. The work [15] provides an
improvement to [17] by showing that one can always reconstruct the true label of the target
image first so that the optimisation only needs to run with respect to the dummy input xxx.
This has improved the robustness of DLG. A further improvement is provided by [3], which
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replaces the L2 distance in DLG by a combination of cosine similarity and a Total Variation
L1 regulariser. Recently, [10] improves upon previous work by making use of GAN that has
been trained on public datasets to provide image priors to guide the optimisation.

In a different line of thinking from the above formulation as optimisation problems, [1]
showed one can invert a fully connected layer if the bias term is nonzero. The input to the
layer can be expressed in closed form using gradients of the weights and of the bias. We
make use of this idea and show that it is possible to extend this solution to the case when the
bias is zero. Unfortunately the same close-form solution cannot be extended directly to the
case of a convolutional layer, because the convolutional operation involves weight sharing in
general. Fortunately, we can represent the convolution operation in a circulant representation
described in [5]. In this way, convolution can be expressed as a single matrix multiplication,
like in a fully-connected layer. Note that the circulant representation does not change the
nature of weight sharing in a convolutional layer, so we cannot use the same method from
the case of a fully-connected layer. This is in contrast to the view in [2], who treated both
cases in a uniform manner.

Based on the circulant representation of convolution, [16] formulated a linear system
of the input to each layer using the forward and backward propagation. By formulation, the
training input must satisfy this linear system. Then by solving this linear system at each layer
iteratively using pseudo inverse, they showed that we can ultimately solve the reconstruction
problem. Furthermore, they formulated a so-called ‘virtual constraint’ to capture additional
constraints that are not captured by the linear system at each layer. Unfortunately, they
were not able to incorporate the ‘virtual constraint’ into their solution. We think that the
‘virtual constraint’ becomes redundant if we solve the linear systems jointly across the entire
network. Empirically, we also found that there has been very little improvement over the
reconstructions by incorporating the ‘virtual constraint’ into the objective function. In our
work, we combine the linear system formulation from [16] with the idea of gradient matching
from [17] and its improvement from [3]. On the one hand, our approach can correct errors
inherent in solving the least square problem defined by the linear system in [16]. On the other
hand, our approach improves gradient matching by introducing strong constraints defined by
the linear systems. Unlike [10], we do not assume additional prior knowledge of the image
we want to reconstruct. Our formulation of the reconstruction problem provides a framework
for us to analyse the vulnerability of a deep network against gradient-leakage attacks through
its architecture, which is not available through purely optimisation-based methods. Based
on our framework, we propose a quantifying metric (12) to measure the likelihood of a
successful reconstruction. Notice that [16] proposed a similar metric ‘RA-i’. Our metric
differs from ‘RA-i’ in three ways: 1. We do not incorporate the ‘virtual constraint’ based
on our observation above; 2. Our metric is defined based on the rank of the linear system
instead of the number of constraints; 3. We quantify the position of the layer by taking a
weighted average of the rank-deficiency of the linear system at each layer.

3 A hybrid framework
Overall assumptions: We only consider the problem of reconstructing a single training
image when the batch size is one. The target model for image-classification is assumed to
consist of consecutive convolutional layers with the last layer being fully connected. We
have considered 2, 3 and 4 layer CNNs with variations which represent different cases of
changes in intermediate feature spaces. Our framework and analysis should apply to deeper
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networks composed of concatenated shallow building blocks of CNNs, as we have specified
an exhaustive set of those building blocks for CNNs. The quality of reconstruction can be
estimated by the average of the rank deficiency from each layer weighted by the position of
the layer in the network.

We assume the ground-truth label of the target image is given. This will not lose gen-
erality, because otherwise we can reconstruct the true label via observing the signs of the
gradients of the weights in the fully connected layer according to [15]. We assume that the
activation function for each layer is piecewise invertible and piecewise differentiable. For
simplicity we do not include pooling in the design of the network. Notice that average pool-
ing can be regarded as convolution. Also notice that CNN without pooling was considered
in [13].
Notations We introduce notations used throughout the paper.

www(i): weight from layer i of size m by n, where 0 ≤ i ≤ d and d is the total number of layers.
For simplicity of notation, we omit i in m and n when possible, but readers should be aware
that the size of the weight need not be the same for different layers. For a convolutional
layer, it denotes the circulant representation of the kernel following [5].
L(xxx,yyy;www): Cross entropy loss function of the network with input image xxx, label yyy and weight
www. We use L(i)(xxx,yyy;www) for the shorthand notation denoting the loss with the truncated model
starting from layer i with corresponding intermediate input xxx(i), weight from the i-th layer
onward. We will omit the label yyy where possible.
zzz(i): the linear output of the layer i before activation given by www(i)xxx(i)+ bbb(i) with input xxx(i)

and bias bbb(i). This also expresses the convolutional operation following the circulant form of
www(i).
ααα(i)(·): activation function after linearity in vector form. We use the unbold letter α(i) to
denote its component.
|.|: when applied to a matrix, the absolute value sign |.| denotes the number of elements.
w,x,z,b: we use unbold letters with subscripts to denote the component at specified indices
of the corresponding matrix in bold letters.

To reconstruct the input image, we adopt an iterative approach similar to [16]: starting from
the label, we reconstruct the input to the last layer and repeat this procedure layer by layer,
each time making use of the reconstructed input to the succeeding layer. We will treat the
cases of a fully-connected layer and a convolutional layer separately. First we treat the
forward and backward pass in training a neural network as imposing two linear constraints
on the input to each layer.
Weight and gradient constraints: At a given layer i, the forward and backward propagation
gives rise to the following equations:

www(i)xxx(i)+bbb(i) = zzz(i), (1a)

∇zzz(i)L · xxx(i) = ∇www(i)L. (1b)

We note that this represents both the fully-connected and the convolutional cases, using the
circulant representation for the weight www(i) and the gradient ∇zzz(i)L. Both zzz(i) and ∇www(i)L
are written as vectors. From the reconstruction point of view, we treat xxx(i) as the unknown
and regard the above equations as weight and gradient constraints imposed on the unknown.
The term zzz(i) is computed from inverting the reconstruction from the subsequent layer xxx(i+1)

using inverse of the activation function:
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zzz(i) = (ααα(i))−1(xxx(i+1)). (2)

The term ∇zzz(i)L can be computed by using the following relations deduced from backpropa-
gation:

∇zzz(i)L= ∇xxx(i+1)L ·∇zzz(i)ααα
(i), (3a)

∇xxx(i)L= ∇xxx(i+1)L ·∇zzz(i)ααα
(i) ·www(i). (3b)

We notice that the circulant representation of the gradient ∇zzz(i)L is determined by the circu-
lant form of the weight www(i) from backpropagating through the weight constraint (1a).

3.1 Fully connected layer
For a fully connected layer, the input can be solved uniquely in closed form. We summarise
the solution in the following lemma. The case of non-zero bias is due to [1] and we show
that it can be extended to the general case. Please see Supplementary A for the proof.

Lemma 3.1. If a fully connected layer has non-zero bias bbb(i) = (b(i)1 , ...,b(i)m ) ∈ Rm, then

the input xxx(i) = (x(i)1 , ...,x(i)n ) ∈ Rn is uniquely determined from the gradient constraint (1b).
Suppose ∃k,1 ≤ k ≤ m, such that b(i)k ̸= 0 and ∂L

∂b(i)k

̸= 0. Then xxx(i) is given by:

x(i)l =
∂L

∂w(i)
kl

(
∂L

∂b(i)k

)−1

, 1 ≤ l ≤ n. (4)

More generally, assuming both ∂L
∂x(i+1)

k

and ∂α
(i)
k

∂ z(i)k

are nonzero, we have

x(i)l =
∂L

∂w(i)
kl

(
∂L

∂x(i+1)
k

)−1(
∂α

(i)
k

∂ z(i)k

)−1

. (5)

Remark 3.2. The reason that we can solve for xxx in closed form described above is essentially
because there is no weight sharing in a fully-connected layer. This implies that the circulant
form of ∇zzz(i)L consists of blocks of diagonal matrices with the same element along the
diagonal in each block, which allows (1b) to be solved exactly.

3.2 Convolutional layer
For a convolutional layer, we can no longer uniquely determine the input in general because
of weight sharing. We first build on the work in [16] and formulate a linear system by
combining the weight and gradient constraints from (1a) and (1b) into a single linear system
of the input xxx. Define uuu(i),vvv(i) to denote the following block matrices

uuu(i) :=
[

www(i)

∇zzz(i)L

]
,vvv(i) :=

[
(ααα(i))−1(xxx(i+1))

∇www(i)L

]
. (6)

Here both the term (ααα(i))−1(xxx(i+1)) and the term ∇www(i)L are written as vectors. The term
∇www(i)L has the same dimension as |www(i)|, i.e. the number of elements of the weight in its
non-circulant form as a 4-dimensional array.
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Notice that we can absorb the bias term into the product www(i)xxx(i) by replacing the the
weight matrix with its augmentation by bbb(i) and xxx(i) by its augmentation by one. Adopting
this notation, (1a) and (1b) can be written as:

uuu(i)xxx(i)− vvv(i) = 0. (7)

Recall that under our assumptions and (2), we can get zzz(i) that defines vvv(i) by inverting
the solution to the reconstruction problem for the following layer and other coefficients in
uuu(i) and vvv(i) are given from training. Based on [16], we view (7) as a linear system for
the input xxx(i) to the current layer i. In general, uuu(i) may not be square and it can be rank-
deficient, which means we can only get an estimated solution using the pseudo inverse of
uuu(i) . Proceeding layer-by-layer in this manner, we can obtain a reconstruction of the input
to the network. This is the R-GAP approach introduced in [16]. We think there are several
sources of error in the solution using this approach alone:

1. The linear system (7) is defined using estimated value of zzz by inverting the solution
from the succeeding layer. So the error from reconstructing the input to the succeeding
layer will carry over to the current layer.

2. Pseudo inverse to a linear system is not unique in general and a minimum norm solu-
tion might not be the best one in our reconstruction problem.

3. Bad conditioning of uuu(i) can contribute to the error of the estimated solution.

To tackle these issues, we propose a correction procedure based on the idea of gradient
matching.
Correcting the approximated solution: From the theory of linear systems, we know that
we can get an approximated solution to a linear system such as (7) by solving a least square
problem:

argmin
xxx

||uuu(i)xxx− vvv(i)||2. (8)

The solution is not unique without requiring the norm of the solution to be minimal: the sum
of a given solution with another vector xxx000 such that uuu(i)xxx000 = 0 is still a solution. On the other
hand, the solution with the minimum norm may not be the most accurate one for our recon-
struction problem. Assuming xxxLS is the minimum norm solution to the least square problem
(8) obtained by using the Singular Value Decomposition (e.g. by Theorem 5.5.1 in [4]), we
propose to correct it using the idea of gradient matching from [17]. More precisely, after we
have obtained a solution xxx(i)LS at a layer, we formulate and solve the following optimisation
problem:

argmin
xxx

D
[
∇wwwL(i)(xxx;www)|www=www∗ ,∇wwwL(i)(xxxtrue;www)|www=www∗

]
, subject to uuu(i)xxx− vvv(i) = 0. (9)

where xxxtrue is the target image, www∗ are given weights and D [·, ·] is a chosen distance function.
Instead of taking D [·, ·] to be the L2-norm as in [17], we adopt the cosine distance function
proposed in [3] because we believe it is less sensitive to the stage of training. More precisely,
we define D [·, ·] to be

D [xxx1,xxx2] := 1− ⟨xxx1,xxx2⟩
||xxx1|| · ||xxx2||

, (10)

for n-dimensional vectors xxx1 and xxx2, where ⟨·, ·⟩ and || · || are the Euclidean inner product
and norm respectively.

In numerical experiments, we find it helpful in terms of reconstruction quality to add
total variation to the objective function (9). The optimisation problem described by (9) will
now become:
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Algorithm 1 Hybrid method.
Input: Number of layers d of the network; True label yyy of the target image xxxtrue; Initial weights www∗; Gradients
∇wwwL(i)(xxx;www)|www=www∗ at each layer i,0 ≤ i ≤ d −1; Number of iterations N(i) at each layer i.
Initialise xxx(d) = yyy.
for i = d −1 to 0 {iterate backward from the last layer of the network} do

Compute the gradient ∇xxx(i+1)L(xxxtrue;www∗)
∣∣
xxx(i+1)=xxx(i+1) using (3b) and xxx(i+1).

Compute ∇zzz(i)L(xxxtrue;www∗)
∣∣
zzz(i)=(ααα(i))−1(x(i+1))

from ∇xxx(i+1)L using (3a).

if the current layer is fully connected then
solve for xxx(i) using (5).

else if the current layer is convolutional then
Define uuu(i),vvv(i) from (6) using (ααα(i))−1(xxx(i+1)) and gradients of L computed above.
Get an estimate xxx(i)LS of the input to layer i by solving the linear system uuu(i)xxx− vvv(i) = 0.

Get a corrected estimate xxx(i) based on xxx(i)LS by solving the optimisation problem (11) with initialisation xxx(i)LS
for N(i) iterations. {only compute and use gradients from the current layer to the last one}

end if
end for
Output: Reconstruction xxx(0) of the target xxx.

argmin
xxx

{
µ1D

[
∇wwwL(i)(xxx;www)|www=www∗ ,∇wwwL(i)(xxxtrue;www)|www=www∗

]
+µ2TV(xxx)

}
, subject to uuu(i)xxx− vvv(i) = 0. (11)

where µ1,µ2 ∈ R are some given weights. Performing the correction described in (11)
at each convolutional layer, we have a hybrid method to reconstruct the input presented in
Algorithm 1. We observe that if we turn the hard constraint in (11) into a soft one, the
algorithm will converge more quickly. More details are provided in section B.
A security measure: In light of the hybrid framework given for a convolutional layer, the
problem of reconstructing a training image can be viewed as consisting of two parts : i. An
iterative procedure starting from the output of the network ; ii. at each layer, solving a linear
system with corrections using gradient matching when the layer is convolutional. Based on
this insight, we define a metric that measures the efficacy of the hybrid method given by
Algorithm 1, which depends partially on the architecture of the target model.

Definition 3.3. Suppose the model M has d convolutional layers indexed by 1, ...,d, fol-
lowed by a fully-connected layer. We define the following metric:

c(M) :=
d

∑
i=1

d − (i−1)
d

·
(

rank(uuu(i))−ni
)
, (12)

where uuu(i) is defined in (6) and ni is the dimension of the input for the i-th layer as a vector.

Because rank(uuu(i)) ≤ ni for each convolutional layer, c(M) will be non-positive. The
larger the value of the metric is, the less secure the model tends to be and the more likely it is
to create better reconstructions. The metric is better interpreted as an estimate of the security
of the model against the hybrid method. Our experiments have shown that it is possible to
fully reconstruct the input to a model M using our method when c(M) = 0. For more details
on the thinking behind Definition 3.3, please refer to Section C in the Supplementary.
Recommendations on architectural design: Based on the proposed metric and analysis,
we can see that a network tends to be less secure against our method if it has wider convo-
lutional layers that greatly increase the dimensions of the feature spaces at the beginning of
the network and only shrinks the feature spaces towards the final layer, compared to other
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designs. Overall, we would recommend designing a model with a small value of c(M) if
defendability against gradient-leakage attacks is the main concern.

4 Experiments
We demonstrate the performance of our hybrid method and how our proposed index c(M)
in (12) can be an indicator of model security in practice. We consider a series of shallow
architectures performing classification on CIFAR-10 provided by [8] and [12]. These ar-
chitectures consist of two, three and four-layer convolutional networks. For simplicity, we
assume the convolutional layer to be bias-free and the fully-connected layer to have non-zero
bias. However, these assumptions on bias are not necessary for our method to work. In order
to illustrate typical architecture designs for the network, we consider several variations of the
network, each representing a different case of changes in dimensions of intermediate feature
spaces. For each network, weights are initialised randomly from a uniform distribution.

Table 1: Model architecture for all variants of the models, rank deficiency ‘rd’ for each layer and values of metric
c(M). The numbers in columns ‘layer x’ refer to kernel width, channels, strides and padding in order. The
numbers in the column ‘fully connected’ refer to the input dimension of that fully-connected layer, whereas the
output dimension is always 10. The values of c(M) are the same between two images used in the experiment.

Layer 1 Layer 2 Layer 3 Fully Connected rd1 rd2 rd3 c(M)

CNN2 Variant 1 3,6,1,0 / / 5400 0 / / 0
CNN2 Variant 2 4,6,2,0 / / 1350 -1470 / / -1470
CNN3 Variant 1 3,6,1,0 4,3,2,0 / 588 0 -4533 / -2266
CNN3 Variant 2 4,6,2,0 3,3,2,0 / 147 -1470 -1050 / -1995
CNN3 Variant 3 3,6,1,0 3,9,1,0 / 7056 0 0 / 0
CNN3 Variant 4 3,1,1,0 3,6,1,0 / 4704 -2146 0 / -2146
CNN4 Variant 1 3,6,1,0 4,5,2,0 4,3,1,0 363 0 -3965 -386 -2772
CNN4 Variant 2 5,16,1,0 5,6,2,0 5,32,1,2 4608 0 -9316 0 -6211
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Figure 1: Comparisons of reconstructions among all approaches for CNN2 and CNN4. Two examples are presented
for each architecture. Observe that DLG is unable to reconstruct in all variants in CNN2 and in CNN4 Variant 1,
but is able to produce good reconstruction with artefact for CNN4 Variant 2. CosineTV is more stable than DLG
while R-GAP performs even more consistently. Our hybrid method improves the results from R-GAP and visually
reduces its checkerboard effect and produces results with better overall quality.
The target image will go through one forward and backward pass to generate the gradients.
For each convolutional layer, we assume Tanh activation and for each fully-connected layer
we assume identity activation. We adopt the unconstrained strategy (16) from Section B in
Algorithm 1, using ADAM optimiser from [7] with default learning rate of 0.001. The ar-
chitecture of the models in the experiments are shown in Table 1, together with the values
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Figure 2: Comparisons of reconstructions among all approaches for CNN3. Two examples are presented for each
architecture. Similar to Figure 1, we notice that DLG and CosineTV show similar performance although CosineTV
provides improvement overall. Our hybrid method is consistent with R-GAP but produces smoother results. Also
notice that all methods generally produce best results in Figure 2c and worst in Figure 2d, which is mostly consistent
with the value of the metric c(M) given in Table 1.

of the metric c(M). For each variant of the model, we compare our method with that of
DLG from [17], R-GAP from [16], and [3] (which we name ‘CosineTV’ for short). For
details of the number of iterations for all the methods, and other hyperparameter settings in
the experiment, please refer to Section D in the Supplementary.

We present sample outputs in Figure 1, Figure 2 with their MSE and PSNR scores in
Table 3 in the Supplementary. Comparing the reconstruction qualities of results in Figure 1,
Figure 2 with the values of c(M) in Table 1, we notice that it is more likely for all methods to
have reconstructions with better visual quality on architectures with a bigger value of c(M),
despite that the relation is not strictly monotonic.
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Figure 3: Comparisons of reconstructions among all approaches for pre-trained CNN4. Two examples are presented
for each architecture. Compared to Figure 1c and 1d, we notice that reconstructions from all methods have wors-
ened, and DLG and CosineTV are no longer producing visually recognisable results. On the other hand, R-GAP
and our hybrid method are still showing more recognisable results.

It is worth noticing that in CNN2 Variant 1 and CNN3 Variant 3, all of their convolutional
layers have positive index given by the summand rank(uuu(i))−ni in (12), which explains the
most information leakage about the training image compared to other variants. On the other
hand, we noticed that the value of rank(uuu(i))−ni is negative in the first layer in CNN3 Variant
4. Although it becomes positive in layer 2, it seems that this cannot make up for the loss of
information occurred in layer 1. We provide the value of rank(uuu(i))−ni at each layer in all
the models in Table 1.

We also apply our algorithm against CNN4 that are pre-trained, see Figure 3. The quality
of reconstructions has degraded for all methods, although our method is still showing more
recognisable results. Details of these experiments are provided in Section F. We provide
more reconstructed examples from CIFAR-10 in Section H. All results are consistent with
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our analysis.
In summary, we have shown that reconstructions from our hybrid method improve over

those from R-GAP while minimising the instability that is inherent in DLG and CosineTV.

5 Conclusion

In this paper, we try to further our understanding of existing gradient-leakage attacks by de-
veloping a hybrid framework which combines solving a linear system at each layer accom-
panied by gradient matching for corrections. Our framework provides a connected viewpoint
between the existing analytic and optimisation-based methods. It also partially attributes the
vulnerability of a deep network against gradient-leakage attacks to its architecture. The met-
ric we propose can provide us with a guideline in designing a deep network more securely.
Limitations and Future Work There are a few important questions that we haven’t ad-
dressed in this work, e.g. how does one apply our framework when the batch size is greater
than one? We provide detailed discussions on limitations and future work in Section G.
The code for this work will be posted on https://github.com/CangxiongChen/
training-data-leakage.
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Analysing Training-Data Leakage from Gradients through
Linear Systems and Gradient Matching: Supplementary
Material

A Proof of Lemma 3.1

Proof. We will prove the general case first. By the construction of a fully-connected layer,
we can take the j-th column of the gradient constraint (1b) which gives:

(
∂L

∂w(i)
1 j

, ...,
∂L

∂w(i)
n j

)T = x(i)j (
∂L

∂ z(i)1

, ...,
∂L

∂ z(i)n

)T . (13)

This implies that if ∂L
∂ z(i)k

̸= 0 for some k,1 ≤ k ≤ n, then xxx(i) can be uniquely determined:

x(i)j =
∂L

∂w(i)
k j

(
∂L

∂ z(i)k

)−1. (14)

In the special case when b(i)k ̸= 0, we can see from the weight constraint (1a) that:

∂L
∂ z(i)k

=
∂L

∂b(i)k

, (15)

which was observed in [1] and subsequently also in [2]. In general, since the activation func-
tions are assumed to be piecewise invertible and piecewise differentiable, and since ∂L

∂x(i+1)
k

is

assumed to be nonzero, we can compute x(i)j using (3), which gives (5).

B Convergence of the algorithm

At a convolutional layer, we have formulated the optimisation problem where the linear sys-
tem (7) defines a hard constraint, so that it is satisfied throughout the optimisation. Although
this formulation makes it clear that the difference xxx(i)− xxx(i)LS is inside the null space of uuu(i),
we find that in practice it does not always lead to the convergence of the optimisation within
a reasonable amount of run time when we use trust-region methods such as [11] and [9] to
solve the constrained optimisation problem given in (11). On the other hand, allowing con-
straint violation by defining (7) as a soft constraint can often speed up the convergence. More
precisely, instead of the problem (11), we consider an unconstrained optimisation problem:

argmin
xxx

{
µ1D

[
∇wwwL(i)(xxx;www)|www=www∗ ,∇wwwL(i)(xxxtrue;www)|www=www∗

]
+µ2TV(xxx)+µ3||uuu(i)xxx− vvv(i)||2

}
, (16)

where µ1,µ2,µ3 ∈ R are some given weights. We have observed in our experiments that
with using the unconstrained optimisation, Algorithm 1 will be able to converge much faster
whereas it can take much longer for the original version to converge to the same result.
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C Justification for the security measure
In light of the hybrid framework given for a convolutional layer, the problem of reconstruct-
ing a training image can be viewed as consisting of two parts:

1. An iterative procedure starting from the output of the network.

2. At each layer, we first solve a linear system defined by the forward and backward
pass of the target image-label pair, then we correct the solution by gradient matching
with the target image if the layer is convolutional. If the layer is fully connected, the
correction is not necessary.

For a fully connected layer, we have shown in Lemma 3.1 that we can always reconstruct
the input in full. This can be regarded as no level of security and we omit it from our
definition of the metric. For a convolutional layer, since the basic criterion for measuring
the solubility of a linear system is given by comparing the rank of the coefficient matrix
with the number of unknowns, and that the corrected solution still satisfies the linear system,
we consider rank(uuu)− |xxx| as an index to measure the efficacy of the hybrid method. The
larger this number is, the less rank-deficient the linear system (7) is and so more likely to
have a full reconstruction for this layer. We also notice that the position where the rank-
deficiency happens also matters. The closer it is to the first layer, the bigger impact it has
on the reconstruction. This is consistent with our intuition that if the representation of the
input data loses information at the first layer, it will be unlikely to substitute that loss in latter
layers. To accommodate for this effect, we discount the index rank(uuu)−|xxx| by the position
of the layer in the network.

D Details of the implementation
For the re-implementations of DLG and CosineTV, we follow the number of iterations used
by the authors of the corresponding work, i.e. 300 for DLG and 4800 for CosineTV. In the
implementation for our hybrid method, we adopt the following setting of hyperparameters:

Table 2: Hyperparameters for our implementation of the hybrid method. The weights are placed according to the
objective function given in (16).

layer 1 layer 2 other layers

Iterations 10000 8000 1000
µ1 1.0 1.0 10.0
µ2 1.0 1.0 0.1
µ3 0.05 0.1 1.0
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E Evaluations of the experiments

Table 3: MSE and PSNR (as in the first and second component in the pair) of the reconstructions in each variant,
averaged over the two images; they are consistent with the visual qualities in Figures 1, 2 and 3.

R-GAP DLG CosineTV Hybrid

CNN2 Variant 1 0.0000, 197.00 2.0181, 45.08 0.2290, 54.54 0.0008, 79.82
CNN2 Variant 2 0.0346, 62.75 2.15E+08, -9.32 0.3257, 53.01 0.0051, 71.69
CNN3 Variant 1 0.0531, 60.90 0.9279, 48.46 0.4086, 52.03 0.0478, 61.48
CNN3 Variant 2 0.0518, 60.99 0.9900, 48.17 0.4739, 51.37 0.0322, 63.78
CNN3 Variant 3 0.0000, 181.26 3.75E+17, -59.49 0.2302, 54.51 0.0020, 75.79
CNN3 Variant 4 0.0429, 61.83 5.11E+13, -29.17 0.5082, 51.07 0.0417, 61.96
CNN4 Variant 1 0.0547, 60.81 0.8585, 48.79 0.4255, 51.86 0.0610, 60.28
CNN4 Variant 2 0.0406, 62.05 0.0951, 58.35 0.2177, 54.82 0.0139, 67.72
CNN4 Variant 1 (pre-trained) 0.2174, 54.90 7.58E+08, -3.07 0.8048, 49.25 0.3449, 53.33
CNN4 Variant 2 (pre-trained) 0.0341, 62.81 406.2, 26.98 0.7353, 49.71 0.0288, 63.63

F Details on the pre-training of CNN4

We pre-train CNN4 on images from only two classes from CIFAR-10, namely ‘automobiles’
and ‘birds’. The target images used for reconstructions have not been seen by the models
during pre-training. Both variants of CNN4 have been trained on 10000 images and tested
on 1000 images, with batch size 64. We have used ADAM optimiser with initial learning
rate of 0.001 and the models were trained for 300 epochs. Figure 4 shows losses during
training and testing. We expect that reconstructions from all methods to deteriorate, because
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Figure 4: Plots of the losses during training and testing. Notice that variant 2 has noticeable overfitting.

a pre-trained model is likely to produce gradients with smaller magnitude and variance when
it is retrained on an unseen image compared to an untrained model. Results shown in Figure
3 seems to have confirmed this guess. However, there might be exceptions when the model is
overfitted and then retrained on an unseen image. We notice that across untrained and trained
cases and for both images, the metric c(M) and the layerwise rank deficiency rank(uuu(i))−ni
have the same value in each variant respectively.
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G Limitations and future work
Batch size In this work, we are only considering the problem to reconstruct one single
training image. It is natural to wonder how to apply our framework to the case when we
are given the gradients from a batch of training images. When a batch of images are used,
the gradients used to define the gradient constraint (1b) will be an average of those from
each image in the batch. It is unclear how to decompose the gradient constraint without
introducing further assumptions. Without those assumptions, a straightforward application
of our hybrid framework in this case will give a reconstruction that is difficult to interpret.
Although there exist works that try to tackle this problem (for example [14] and [3]), we
have not found any approach that offers theoretical insight nor guarantees to this problem.
For the interest of obtaining theoretical guarantees of the reconstructions and the security of
the architecture, we would leave this as future work.
Scope of the security measure We think that the security measure (12) captures the solubil-
ity of the linear system (7) by computing its rank deficiency which depends on the input and
output dimensions of the layer and the values of weights and gradients. The security mea-
sure does not take into account other factors such as the condition number of the the system
(7), which although affects the stability of the solution rather than solubility, can also affect
the quality of the reconstructions. It would be interesting to extend the security measure to
include the condition number of the system to give a more accurate measure of the security
of the architecture under our hybrid framework.
Activation functions In all convolutional networks used in the experiment, we have as-
sumed the activation function in a convolutional layer to be Tanh. We believe that our
framework will also apply to other activations as long as they are smooth and invertible.
We noticed that if we use LeakyReLU and solve the optimisation problem in (11) using con-
strained optimisation such as trust-region methods from [11] and [9], it will be difficult for
it to converge to the correct optimum within a reasonable amount of running time. Although
this is more of a limitation with the optimisation than our framework, we will be looking for
strategies for optimisation that can better deal with non-smooth functions in the future.
Architectures of the target model Although we have not considered other popular archi-
tectures in image classifications such as Residual networks [6], we believe our framework
can be adapted to these networks if we can define the corresponding linear system for a
residual block. For example, we can define a similar linear system as (1a) by approximating
the ResNet block defined in [6] using Taylor expansion for the non-linear terms given by
activations inside the block. More details will be given in future work.
Reducing gradient leakage Another future avenue of work is investigating strategies to
reduce gradient leakage with theoretical guarantee. A promising direction is considering
training methods that provides Differential Privacy. One insight from our analysis leading to
the metric c(M) is that to reduce gradient leakage, we can add noise to the gradients so that
the value of c(M) can be reduced sufficiently.
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H More examples of reconstructions
We provide more examples from CIFAR-10 for comparing all the methods discussed in the
Experiment section. One image from each of the 10 classes is chosen.

Target R-GAP DLG CosineTV Hybrid

(a) CNN2 Variant 1

Target R-GAP DLG CosineTV Hybrid

(b) CNN2 Variant 2
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Target R-GAP DLG CosineTV Hybrid

(a) CNN3 Variant 1

Target R-GAP DLG CosineTV Hybrid

(b) CNN3 Variant 2
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Target R-GAP DLG CosineTV Hybrid

(a) CNN3 Variant 3

Target R-GAP DLG CosineTV Hybrid

(b) CNN3 Variant 4
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Target R-GAP DLG CosineTV Hybrid

(a) CNN4 Variant 1

Target R-GAP DLG CosineTV Hybrid

(b) CNN4 Variant 2


