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Abstract

Learned regularization for MRI reconstruction can provide complex data-driven priors to inverse

problems while still retaining the control and insight of a variational regularization method. Moreover,

unsupervised learning, without paired training data, allows the learned regularizer to remain flexible

to changes in the forward problem such as noise level, sampling pattern or coil sensitivities. One

such approach uses generative models, trained on ground-truth images, as priors for inverse problems,

penalizing reconstructions far from images the generator can produce. In this work, we utilize variational

autoencoders (VAEs) that generate not only an image but also a covariance uncertainty matrix for each

image. The covariance can model changing uncertainty dependencies caused by structure in the image,

such as edges or objects, and provides a new distance metric from the manifold of learned images. We

demonstrate these novel generative regularizers on radially sub-sampled MRI knee measurements from

the fastMRI dataset and compare them to other unlearned, unsupervised and supervised methods. Our

results show that the proposed method is competitive with other state-of-the-art methods and behaves

consistently with changing sampling patterns and noise levels.
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I. INTRODUCTION

Compressed sensing Magnetic Resonance Imaging (MRI) provides the benefits of MRI with

faster acquisition times. Sophisticated mathematical reconstruction techniques allow for high-

quality images to be produced with just a subset of the full MRI measurements, which are

quicker to obtain. This reduces costs but can also improve image quality by reducing motion

artifacts. Mathematically, we seek to recover an image, x ∈ X , from observed measurements,

y ∈ Y . The two are related by a linear forward model, A : X → Y giving the equation Ax = y.

In MRI, A is composed of a Fourier transform and a subsampling operator that takes just a

subset of the Fourier data. Measurements are incomplete and so multiple solutions may exist

and the problem is ill-posed.

This difficulty can be mitigated by incorporating prior information; we consider this to be

given in the form of a regularizer, R, in a variational regularization framework [22], [24], [36]

arg minx d(Ax, y) +R(x) (1)

where d : Y×Y → [0,∞] is a similarity measure, ensuring that the reconstructed image matches

the data, and R : X → [0,∞] is a regularization term which is small if the image satisfies some

desired property.

We extend recent work, including [5], [10], [13], [15], [33] that consider the use of a generative

machine learning model as part of the regularizer, called generative regularizers. A generative

model is designed to take a sample from a distribution in a low-dimensional latent space and

generate data similar to some training distribution. Common deep generative models include

variational autoencoders (VAEs) [21], generative adversarial networks (GANs) [14] and nor-

malizing flows [29]. The generative model is trained on high-quality data, obtained from fully

sampled measurements, with no knowledge of the forward model, A, or any sub-sampled data.

The idea of generative regularizers is to penalize inverse problem solutions that are dissimilar

to the learned distribution on ground truth, or high-quality reconstructed, images.

The generative part of a VAE consists of a network, such that for any point z ∈ Z , within

the learned latent space, the network outputs a distribution on the image space X ,

pG,Σ(x|z) = N (x;Gθ(z),Σθ(z)) (2)

for parameterised functions Gθ : Z → X and Σθ : Z → Rd×d, d := dim(X ). In a standard VAE

model, Σθ is taken to be a multiple of the identity matrix, i.e. Σθ(z) := ρI , where the predicted
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variance ρ is either fixed or learned. This assumes that the reconstruction error of the generated

image is independent and identically distributed for all pixels. In reality, parts of an image, such

as the background, will be easy to model whereas sharp edges are harder to model accurately.

Similarly, as images are commonly piece-wise smooth, there are often local correlations in the

errors made by the model. A well-known issue with VAEs is their tendency to produce smooth

images (see e.g. [32]), missing the sharp edges that exist in real data. In this work we consider

the effect of a more expressive covariance matrix, Σθ, in a generative regularizer.

a) Contributions: We propose to solve compressed MRI reconstruction with highly adaptive

generative regularizers. Edge and correlations are modeled with a structured covariance network.

We show the strength of this model on real data obtained from the fastMRI dataset. Contributions

include:

• A demonstration of the structured covariance model introduced by Dorta et al. [12] on the

fastMRI dataset of knee MR images.

• An extension of the denoising example from Dorta et al. [12] for use in inverse problems

with a non-trivial forward model, producing a novel generative regularizer.

• A demonstration of how the prior provided by the VAE with structured covariance can be

explicitly visualized. We see that the structured covariance model has learned long-range

correlations between pixels, taking into account image structure.

• An ablation study to compare three different options for the decoder covariance, Σθ(z): Σ

is a fixed constant multiplying the identity matrix, Σ is a diagonal matrix with a learned

diagonal and the proposed structured covariance where Σ is dense. We show the most

flexible, dense covariance method, produces the best inverse problem results.

• Comparisons of our proposed regularizer with a variety of regularizers: the unlearned Total

Variation (TV) [31] and least squares methods. Also with two unsupervised methods: a

deep image prior approach with a pre-trained generator from Narnhofer et al. [26] and the

original Compressed Sensing using Generative Models work by Bora et al. [5]. Finally, with

a state-of-the-art, learned, end-to-end method, variational networks [16]. We demonstrate

that our method is competitive with the state-of-the-art neural networks, yet offers superior

generalization to other noise statistics and sampling patterns.
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II. RELATED WORK

Deep learning approaches to image reconstruction in inverse problems is a growing field [4].

There are several supervised deep learning approaches [16], [18], [25], [27], [28], [35], [38] that

require datasets of subsampled measurements paired with high-quality reconstructions. With any

change in the forward model, e.g. a different k-space sampling pattern, or noise level, new data

needs to be acquired and models retrained. Furthermore, with these methods, care needs to be

taken to ensure the image reconstruction is consistent with the observed measurements and these

methods can also be unstable to small perturbations in the measured data [2]. In contrast, deep

image priors [26], [34], have no data requirements and instead use an untrained convolutional

neural network as a prior for the inverse problem. The prior is implicit and comes from the

architecture choices, another choice to make, but also requires regularization in the form of

early stopping to prevent over-fitting to the potentially noisy data.

We choose to take an unsupervised approach, where we have example ground truth images

but no paired data. The image modeling, for training the regulariser, and the forward modeling

for the inverse problem reconstruction, are completely decoupled. We model the images using a

generative model incorporating it as part of a regulariser for the inverse problem reconstruction.

There has been previous work in this area [5], [10], [13], [15], [33], and we extend it with the

addition of a structured image covariance network.

When choosing and training a generative model for use in inverse problems, the generative

model must be able to produce a whole range of possible solutions. A common issue with

GANs [14] is, that they do not generate across the range of images they were trained on.

This failure can be subtle [3] and therefore difficult to identify. GANs also do not have an

encoder, and finding a latent space value that corresponds to a particular image is a non-convex

optimization problem with multiple local minima. In comparison, a VAE is more suitable for

use in generative regularizers because they are able to reconstruct images across the span of

the training distribution although with the consequence of fewer high frequencies. We consider

VAEs over other generative models such as normalizing flows or invertible neural networks, both

of which have been applied to inverse problems [19], [20], because of the regularizing effect of

a lower dimensional latent space in the VAE. Dorta et al. [12] proposed the use of a structured

covariance as part of a VAE for denoising, and the novel addition of this work is the application

to MRI reconstruction.
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III. METHOD

We build a probabilistic model for the reconstructed image, x, given an observation, y. First,

consider the likelihood of the measurement, y, given image, x, denoted p(y|x), and usually taken

to be N (y;Ax, γ2I) for additive Gaussian noise over the observations with standard deviation,

γ. We choose a prior on the images x given by a pre-trained generative model, pG,Σ(x|z) as

in (2). Finally, let pZ be prior on the latent space used to train the generator, usually N (z; 0, I).

Combining these parts, we have that

p(x, z|y) ∝ p(y|x, z) pG,Σ(x|z) pZ(z) (3)

= p(y|x) pG,Σ(x|z) pZ(z). (4)

Ideally, we would seek to marginalize out the latent vector, z, however this integral is in-

tractable, except by expensive sampling; instead, we take a maximum a posteriori (MAP)

estimate. By taking logarithms, maximizing (4) with respect to x and z is equivalent to variational

regularization (1) with

d(Ax, y) =
1

2γ2
‖Ax− y‖2

2 (5)

and

R(x) = min
z

(
log(|Σθ(z)|) +

‖x−Gθ(z)‖2
Σθ(z)

2
+
‖z‖2

2

2

)
, (6)

where we denote the weighted norm by ‖x‖2
M := xTM−1x and the determinant of a matrix Σ

by |Σ|. Equation (5) ensures that x explains the observation y, while the second term in (6)

constrains x to be close to images in the range of the generator.

a) VAEs with Structured Covariance: The generative model is trained to minimize the

distance between the generated, pG,Σ(·; θ), and training, pIm, distribution. A VAE is derived

by choosing the distance measure to be a Kullback–Leibler divergence and then maximizing

a lower bound approximation to this distance [21]. The intractable distribution over the latent

space, pG,Σ(z|x; θ), is approximated by an encoder

q(z|x;ψ) = N (z;µψ(x), diag(σ2
ψ(x))) =: Nx,ψ(z) (7)

with neural networks µψ, σ2
ψ, parameterized with weights, ψ. Following the derivation in [21],

training a VAE becomes a minimization with respect to ψ and θ of

Ex∼pImEz∼Nx,ψ (nll(x,Gθ(z),Σθ(z)) + dKL(Nx,ψ|pZ)) (8)
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where we write the negative log-likelihood as

nll(x,G,Σ) = log(|Σ|) +
1

2
‖x−G‖2

Σ + constants (9)

and the expectation over x is calculated empirically over the training set. The expectation over

z is also calculated empirically and for more details see the original paper [21].

b) Structure of Σθ(z): Using a dense matrix Σθ is computationally infeasible for even

moderate-sized images as it is expensive to calculate both the log determinant and the inverse

required for the norm. We use the computationally efficient Structured Uncertainty Prediction

Networks as developed by Dorta et al. [12]. For each point in the latent space, an additional

decoder, parameterized by θ, outputs a sparse lower triangular matrix, Lθ(z), with the diagonal

constrained to be positive. This forms the Cholesky decomposition of precision matrix, Σ−1
θ ,

such that Σθ = (LθL
T
θ )−1. The Cholesky decomposition is taken to be sparse: (Lθ)i,j = 0 if

pixels i, j are not in a small neighborhood. This leads to a sparse precision matrix, Σ−1
θ . A

zero value at entry i and j in Σ−1
θ means these pixels are independent, conditioned on all other

image pixels. The pixels could still be correlated and thus this still allows for a dense covariance

matrix. Indeed we would not choose to make Σθ sparse because zero values in the covariance

indicate two uncorrelated pixels and we wish to allow complex dependencies across images.

The local sparsity structure is also amenable to parallelization on the GPU and for more details

see [11]. A pictorial view of the full network including an example sparse Cholesky matrix is

given in figure 1.

c) Objective functions: This sparse Cholesky decomposition of the precision makes pre-

dicting a dense covariance matrix computationally feasible. The negative log-likelihood from (8)

becomes

nll(x,G,Σ) = −2
d∑
i=1

log(Lii) +
1

2
‖L(x−G)‖2

2 (10)

up to constant terms and with, as above, Σ−1 = LLT . The log determinant is now just a

summation over the diagonals of the Cholesky matrix, we have removed the dense matrix

inversion and there is no need to build the full covariance matrix. This also simplifies the

regularizer from (6), giving

R(x) = min
z

(
nll(x,Gθ(z),Σθ(z)) +

1

2
‖z‖2

2

)
. (11)

Moreover, sampling from the extended VAE is possible by solving a sparse system of equations

to get a sample x = Gθ(z) + (Lθ(z)T )−1u where u ∼ N (0, I).
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Fig. 1: Comparison of the standard VAE (top) and the Structured Uncertainty Prediction Networks

as developed by Dorta et al. [12] (bottom). The VAE has an encoder network that outputs a

distribution, N (z;µψ(x), diag(σ2
ψ(x))), which is then sampled from to get a latent vector, z,

which is passed to the generator network, Gθ(z). In addition to the usual generator, the proposed

network includes a network that takes latent vectors, z, and outputs the weights of a sparse lower

triangular matrix, Lθ(z). This matrix corresponds to the Cholesky decomposition of the inverse

covariance for the generated image.

We note that the minimization problems in (8) and (1) with (12) are not well defined as they

are not bounded from below. Pixel values that can be determined with high accuracy e.g. those

of a consistent black background, can have extremely low variance and the log determinant term

may become large and negative. We cap the size of the diagonals of Lθ using a scaled tanh

activation to deal with this. Investigating other priors on Lθ is an interesting area for future work.

IV. EXPERIMENTS

a) Dataset: The NYU fastMRI knee dataset contains, amongst other data, 796 fully sampled

knee MRI magnitude volumes [23], [37], without fat suppression. This data was acquired on

one of three clinical 3T systems (Siemens Magnetom Skyra, Prisma and Biograph mMR) or one

clinical 1.5T system, using a 15-channel knee coil array and conventional Cartesian 2D TSE
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protocol employed clinically at NYU School of Medicine. We use the ground truth data from

the fastMRI single coil challenge, where the authors used emulated single-coil methodology

to simulate single-coil data from the multi-coil acquisition. We extract 3,872 training and 800

test ground truth images from this dataset, selecting images from near the center of the knee,

resize the images, using the Python imaging library [9] function with an anti-aliasing filter, to

128×128 pixels and linearly rescale each image to the range [0, 1]. The training and test datasets

correspond to the training and validation sets of the fastMRI dataset and images from the same

volume are always contained in the same dataset.

b) Forward Problem: Our forward problem is inspired by the fastMRI single-coil recon-

struction task; reconstructing images approximating the ground truth from under-sampled single-

coil MR data [37]. The magnitude ground truth images are Fourier transformed and subsampled.

To this end, a mask selects the points in k-space lying on a set number of radial spokes. The more

spokes we measure, the more data is observed. Radial subsampling was chosen, as a common

subsampling method, which is illustrative for compressed sensing [17]. We use the operator

discretization library (ODL) [1] in Python and take the same radial subsampling MRI operators

as in [7].

c) Model Architecture: See figure 1 for a comparison of the VAE and the VAE with

structured image covariance. All the networks are built of resnet-style blocks which consist

of a convolutional layer with stride 1, a resizing layer, followed by two more convolutional

layers, and then a relu activation function. The output of this process is then added to a resized

version of the original input to the block. The resizing layer is either a bilinear interpolation for

an up-sampling layer, increasing width and height by a factor of 2; convolutions with stride 2

for a down-sampling layer or a convolution with stride 1 for a resnet block that maintains image

size. We choose a latent space of size 100. The generative network consists of a single dense

layer outputting 8x8 images with 16 channels before a resnet block without resizing to give 8x8

images with 256 channels, then four up-sampling blocks are applied giving image sizes 16x16,

32x32, 64x64 and 128x128 with channels 512, 256, 128 and 64 and final another resnet block

without resizing to reduce the channels down to one output image. The covariance network is

identical but outputs a 128x128 image with 5 channels, from which the sparse Cholesky matrix

is formulated, based on code from Dorta et al. [12]. The sparsity pattern is chosen such that

the Cholesky matrix Lθ(z)i,j is non-zero only if pixels i and j lie in the same 5× 5 patch. The

encoder is reversed copy of the generator, with down-sampling layers replacing the upsampling
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layers. We include drop-out layers during training.

d) Model Training: Training the VAE with structured covariance is done in a two-stage

process. First the generated mean, Gθ, and the encoder, Nx,ψ, are trained with a standard VAE

loss i.e. Σθ = ρI where ρ is fixed [21]. The weights for the mean and encoder are then fixed

before the covariance model is trained using (8). The choice of this two-stage training is two-

fold: firstly, it forces as much information as possible to be stored in the weights of the mean,

and not the covariances, and secondly, it allows us to compare the effect of just changing the

covariance models in the ablation study. Models were built and trained in TensorFlow using an

NVIDIA RTX 2080 - 8GB GPU. It took approximately 8 hours to train the means and then

24hrs and 30hrs for the diagonal and structured covariance models. The code will be available

on publication.

e) Ablation Study: We consider three variations on the structure of Σθ(z): Σθ is a fixed con-

stant multiplying the identity matrix, Σθ is a diagonal matrix with a learned diagonal and our pro-

posed method where Σθ is a dense matrix. We call these options: mean+identity, mean+diagonal

and mean+covar*. The mean+identity model is just taken to be the output of the first part of the

mean+covar* training described above. For mean+diagonal, we again take the learned generated

mean, Gθ, and the encoder, Nx,ψ from the mean+identity model and then optimize (8) for the

covariance network, but choose the off diagonals of the Cholesky matrix, Lθ(z), to be zero, so

that the final covariance matrix is diagonal.

f) Proposed reconstruction method: For the proposed method mean+covar* and the ver-

sions mean+identity and mean+diagonal we choose a variation on the above regulariser (6)

R(x) = min
z
λ
(

nll(x,Gθ(z),Σθ(z)) +
µ

2
‖z‖2

2

)
. (12)

The addition of the two regularization parameters λ and µ is in recognition that this is a non-

convex problem. We use alternating gradient descent with backtracking line search (see e.g.

Algorithm 9.2 of [6]) where gradient descent steps are taken, alternating in the x and z space,

with step size chosen to insure the objective decreases. We initialize at a rough reconstruction,

given by the adjoint of the forward operator, and the encoding of the adjoint for x and z,

respectively. Regularization parameters were selected via a grid search to maximize the peak

signal–to–noise ratio (PSNR).

g) Unlearned method comparisons: We compare against Total Variation (TV) regulariza-

tion [31] implemented using the Primal-Dual Hybrid Gradient method [8], with regularization
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parameter chosen to maximize PSNR. As a baseline, we also calculate the least squares solution,

minx ‖Ax− y‖2
2, optimized using gradient descent with backtracking line search.

h) Data driven prior comparisons: For another example of a generative regulariser, we

take our trained mean generator Gθ and implement the method of Bora et al. [5], minimizing

with respect to z the objective

L(z) =
1

2
‖AG(z)− y‖2

2 + µ‖z‖2
2, (13)

searching for an image in the range of the generator that best matches the measurements. The

regularization parameter, µ, is chosen to maximize PSNR. We also implement the approach

of [26] which takes a trained generator but then, after observing data, tweaks the weights of

the network, optimizing z∗, θ∗ ∈ arg min ||AGθ(z)− y||22, we call this Narnhofer19. We use the

same mean generator as in our other experiments, gradient descent with backtracking for the

z optimization and TensorFlow’s inbuilt Adam optimizer for the network weight update. We

choose 1000 iterations to find an initial value of z and then select the number of iterations for

the alternating z and θ updates via a grid search to maximize the PSNR.

i) Supervised end-to-end method comparison: Finally, we also demonstrate comparisons

with a variational network (VN) [16]. This is a end-to-end approach which takes (6) with

d(Ax, y) = λ
2
‖Ax− y‖2

2 and treats the regulariser R as some unknown function. Optimizing (6)

by gradient descent will lead to updates of the form

xt+1 = xt − αtλAT (Axt − y) +∇R(xt), (14)

where AT is the adjoint of A and αt is a step-size. The authors replace the unknown ∇R(xt)

term with a learned component, inspired by a Fields of Experts model [30]. Fixing the number

of iterations and unrolling leads to an end-to-end method that includes information from the

forward and its adjoint. We use the same network design and parameters as the original paper.

The iterations are first initialized with a rough reconstruction given by the adjoint. The gradient

of the regularizer consists of a convolution with 24 filters, kernel size of 11 and stride 1; a

component-wise activation function; and then a convolution transpose with the same dimensions

to return an image with the same dimensions as the input. The activation function consists of

a weighted sum of 31 radial basis functions with learnable means, variance and weights. All

learnable parameters are allowed to vary independently in each layer and the step-size αt and

parameter λ are also learned. We train three variations on our data: 25 radial spokes with 0.05

and 0.0125 added noise and 125 radial spokes with 0.05 added noise.
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Fig. 2: Comparing the covariance models mean+diagonal and mean+covar*. The first column

gives the ground truth, and the second column a reconstruction in the range of the VAE generator.

The third gives the residual which can be considered as one sample of a zero mean Gaussian

distribution with unknown covariance. The final two columns give single residual samples from

our learned covariances mean+diagonal and mean+covar* models. Columns are rescaled for

better visualization.

V. RESULTS

a) Ablation Study: To compare the covariance models mean+identity, mean+diagonal and

mean+covar*, visualizations of samples from the learned covariances are given in figure 2. The

first three columns compare the original images, the generated mean images and the residual. This

residual can be considered as one sample of a zero mean Gaussian distribution with unknown

covariance. The final two images show single residual samples from our learned covariances.

We see that the mean+diagonal places uncertainty in the right locations, but without structure,

the samples are speckled and grainy. The mean+covar* models are able to match some of the

missing structures from the generated mean images. We note that these are random samples and

therefore not expected to match the residual precisely but rather illustrate statistical similarity.

Figure 3 compares the effectiveness of the three covariance models as generative regularisers.

The same observed data was used for each reconstruction method for each image. It is clear



12

0 20 40 60 80 100 120 140
Number of radial spokes

22

24

26

28

30

32

34

36

38

40

PS
NR

mean+identity
mean+diagonal 

mean+covar*

0 20 40 60 80 100 120 140
Number of radial spokes

22

24

26

28

30

32

34

36

38

40

PS
NR

mean+identity
mean+diagonal 
mean+covar*

Fig. 3: Ablation study comparing generative regularisers based on VAEs with different noise

models mean+identity, mean+diagonal and mean+covar*. The plots show PSNR values average

over reconstructions of 50 test images. The mean is given by the solid line and standard deviation

in the shaded box. The x-axis measures the number of radial spokes in the sampling pattern and

the measured data was corrupted with additive Gaussian noise of standard deviation 0.0125 on

the left and 0.05 on the right.

that the results for mean+covar* gives a consistently higher PSNR value than mean+diag and

mean+identity and we use this method throughout the rest of the results section. These results

support our hypothesis that learning a more flexible distance measure allows us to better fit the

data and gives a better regularizer for our inverse problem.

b) Prior introspection: We are able to explicitly examine the learned structured covariance,

to visually assess the prior information passed to the generative model. To do this, we take a

test image, x, and use the encoder to give a latent vector, z, that corresponds to the test image.

From this we can calculate the structured covariance, Σθ(z) ∈ Rd×d, where d = dimX . Each

row of the covariance matrix corresponds to a pixel in the generated image, and the row can

be reshaped into an image, showing the correlations between the chosen pixel and all others.

Two example images with chosen pixels highlighted with a star are shown in figure 4. Positive

correlations are given in red, and negative correlations are in blue. We can see that the structure

of the edges is present, and that, despite the local structure of the precision matrix, longer-range

correlations have been learned.

c) Comparison with unlearned methods: Figure 7 shows comparisons with TV and least

squares reconstructions for a range of noise levels and the number of radial spokes in the sampling

pattern. Image examples can be seen in columns 2 and 3 of figures 5 and 6. We see the results
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Fig. 4: Visualization of learned covariances between example pixels (yellow stars) and other

pixel locations for the mean+covar model. Red indicates a high positive correlation, and blue

is a strong negative correlation.

GT

5

21.90
Least squares
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25.87
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25.07 28.44 26.01 29.50 29.60 15.76 29.58

Sp
ok
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=1

25 25.21 30.20 26.68 30.05 28.97 30.98 30.78

Fig. 5: Example reconstructions of a test image for different amounts of measured data: 5, 25,

45 and 125 radial spokes, all with additive Gaussian noise with standard deviation 0.05. The

columns give different reconstruction methods. The PSNR values are added in white and the red

boxes indicate the settings the highlighted variational network has been trained on.
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Fig. 6: Example reconstructions of a test image with additive noise of different standard

deviations: 0.2, 0.05 and 0.0125, all with a sampling pattern with 25 radial spokes. The layout

is as in figure 5.

of mean+covar* track TV but with improvements across the range of radial spokes and noise

levels tested. Especially in the examples in figure 6 you can see the piece-wise constant shapes

typical of a TV reconstruction, whereas for the same measured data mean+covar* has managed

to reconstruct more of the fine detail. As expected, due to the difficult nature of the inverse

problem, the least squares reconstruction does poorly. As a rough indicator, our un-optimized

implementation took 1.8 seconds for reconstructing one image using least squares, and 6.4

seconds using TV, for one choice of regularization parameter. For one choice of regularization

parameter, mean+covar* took 78.2 seconds.

d) Comparison with other data-driven priors: Comparisons with Narnhofer19 and range [5]

are given in figure 8 and columns 4 and 5 of figures 5 and 6. We see that the results of searching

in the range of the generator saturate so that even with increased data in the form of radial spokes,

or better data in the form of less noise, the reconstructions don’t see significant improvement.

The example image reconstructions reflect this; they show overly smoothed images that, although

have the right structure, don’t contain any of the fine detail of the ground truth. This could be

because the generative model is not expressive enough to match this fine detail. Alternatively,

it could be because the non-convex optimization has failed to find a good enough minimum to

match the measured data. The results of Narnhofer19 are much more detailed and very similar
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Fig. 7: Comparison of the mean+covar* method with the training-free methods TV and least

squares. The plots show the mean PSNR values for reconstructions averaged over 50 test images,

with the standard deviations given by the shaded area. The left plot shows results from measured

data with additive Gaussian noise of standard deviation 0.05 and differing numbers of measured

radial spokes. The right plot gives results where 25 radial spokes are used for each reconstruction

but the standard deviation of the added noise varies.
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Fig. 8: Comparison of the mean+covar* method with range [5] and Narnhofer19 [26], generative

regularizer approaches. The experimental setup is as figure 7.

in PSNR values to our mean+covar*. In the images, there is some evidence of smoothing of

details e.g. in figure 6. Our un-optimized implementation took 106.7 seconds for Narnhofer19

and 23.9 seconds for the range [5] method.

e) Comparison with supervised end-to-end methods: We now compare mean+covar* with

variational networks [16], trained end-to-end on particular noise and sampling settings. Figure 9

shows the PSNR results for 50 test images, with vertical lines highlighting the settings where

the networks were trained. Example images are shown in columns 6 and 7 of figures 5 and 6
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Fig. 9: Comparison of the unsupervised mean+covar* method with the supervised variational

networks [16]. The experimental setup is as figure 7 but in addition, the vertical lines depict the

experimental settings the variational networks were trained on.

with the trained for setting highlighted in red. We note that the variational networks achieve the

best results, in comparison to the other methods, for the settings they were trained on. This is

as expected for end-to-end reconstructions. We see that the results are less optimal the further

from the trained for setting, with some particularly poor results, e.g. in figure 5, while our

unsupervised method remains consistent. Also as expected, the variational networks are quick

to implement once trained, taking 3.4 seconds for one image

f) Generalization to a Different Sampling Pattern: Finally, we test the generalization ability

of the methods by changing the sampling pattern. We mask horizontal rows in the k-space,

taking 16 (out of 128) center rows and a uniformly random selection of other rows with a given

probability, p. Fully sampled images correspond to p = 1. Example sampling patterns and one

example reconstruction is given in figure 10. We see an improvement over TV for mean+covar*.

Narnhofer19 gives good PSNR values but the images are potentially over-smoothed. For example,

the vertical lines in the top left part of the zoomed-in region are consistently missing from the

Narnhofer19 reconstructions. The variational network has not been trained on this horizontal

sampling pattern and although gives a reasonable reconstruction, seems to have some artifacts,

for example in the top right and bottom left of the image.

VI. DISCUSSION

The numerical results show that the generative regularizer mean+covar* consistently outperforms

TV, figure 7, and is competitive with other unsupervised generative model regularization schemes,
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Fig. 10: Example reconstructions of an image using measured data taken with different horizontal

random sampling unseen in the training of the variational networks. The first column gives the

k-space mask used to sample the data. The remaining columns give reconstructions for the

different methods.

figure 8, over a range of noise levels and sampling patterns. This is an important contribution,

demonstrating a generative model, trained on an MRI dataset, provides an effective prior for

image reconstruction. As part of the ablation study, figures 2 and3, we demonstrated that models

mean+diag and mean+identity provided some regularization but mean+covar* provided the most

flexibility to fit the data and thus the best results. Searching in the range of the generator we saw

evidence that the generator was not expressive enough to fit the data and that the reconstructed

images did not continue to improve with more or higher-quality data, this matches with similar

results in [5], [13].

The generative regularizers presented are not end-to-end methods and still require the use of

an iterative optimization scheme to reconstruct an image given an observation, furthermore the

optimization objective is non-convex. However, this optimization is practically straightforward

as the gradients can be calculated automatically, e.g. using TensorFlow, and the optimization

can be initialized with the adjoint reconstruction. The benefit of the unsupervised approach is

that retraining is not required for different forward models. Figure 9 shows that the variational

network end-to-end method [16], although provides the best results on the forward model it was

trained on, sees its success drop off as you test it on other forward model settings. An additional
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benefit of generative regularizers is that you can visually inspect the learned image prior and

we demonstrate this in figure 4.

Training the Cholesky weights for the precision matrix proved tricky. As shown in figure 2,

the structured covariance model has learned some of the residual structure that we expect but at

the expense of applying higher variances across the whole image. This may make the structured

covariance model too permissive, allowing it to fit noise or artifacts from the measurements.

With an improved model, we expect that the regularization parameters in (12) would not be

required, they could be set by the hierarchical Bayesian derivation. Future work could consider

what additional priors or alternative modeling schemes could help the learning of this structured

covariance model, such as described in [11]

In this work, we have assumed that the images we wish to reconstruct are similar to those in

the training dataset used to train the generative model. This is not obvious in medical imaging,

where damage, tumors, and illness can lead to different image presentations that may be far from

those of healthy volunteers used to create datasets. Modeling this, e.g. by sparse deviations [10],

[13] away from the range of a generative model, is an interesting area of future development.

To bring this work closer to real applications, future work could also consider complex images

and parallel MRI.

VII. CONCLUSION

Generative regularizers provide a bridge between black-box deep learning methods and traditional

variational regularization techniques for image reconstruction. We propose a highly adaptive

generative regularizer that models image correlations with a structured noise network. The

proposed method is trained unsupervised, using only high-quality reconstructions and is thus

adaptable to different noise and k-space sampling levels. Our results show that generative

regularizers are most effective when the underlying generative model outputs both an image

but also a non-trivial covariance matrix for each point in the latent space. The covariance

provides a learned metric that guides where the reconstruction can or cannot vary from the

learned generative model. We demonstrated the success of this approach through comparisons

with other unsupervised and supervised approaches.
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