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Abstract Quadrics are a compact mathematical formulation
for a range of primitive surfaces. A problem arises when
there are not enough data-points to compute the model but
knowledge of the shape is available. This paper presents
a method for fitting a quadric with a Bayesian prior. We
use a matrix normal prior in order to favour ellipsoids on
ambiguous data. The results show the algorithm to cope well
when there are few points in the point cloud, competing with
contemporary techniques in the area.

Keywords Geometry, statistics, graphics, computer vision.

1 Introduction

Surface fitting is one of the most important research
areas in computer graphics and geometric modelling.
It studies how to approximate unorganized geometric
data using regular surfaces with explicit algebraic forms,
which benefits a lot of important graphics applications,
including shape approximation, surface reconstruction,
local geometric feature analysis, etc. In the fitting process,
the choice of the target surface form usually depends on the
application, where algebraic surfaces with different orders,
or freeform surfaces, such as B-Splines, would be required.

Among all types of surfaces; quadrics and hyper-surfaces
represented by a quadratic polynomial in the embedding
space, may be the most popular form in surface fitting
for several reasons. First, they can represent a variety
of common primitive surfaces, such as planes, spheres,
cylinders, etc. Second, a lot of real world shapes, ranging
from industrial products to architectures can be represented
by a union of quadrics. Third, it is the form with the least
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order to estimate second order differential properties, such
as curvatures. Fourth, the simple quadratic form allows
for efficient numerical computations which are usually in
closed-form.

In this work, we present a novel probabilistic quadric
fitting method. Alternative to previous algorithms, we
assume an additive Gaussian noise model on the algebraic
distance. A Bayesian prior is placed on the parameters,
allowing certain shapes to be favoured when not much
data is available. We test our quadric fitting method on
various datasets, both synthetic and from the real world. The
experiments and comparisons show that our method is not
only efficient, but also robust to contaminated data.

2 Related Work

There are a large number of examples of fitting both
implicit and parametric surfaces to unordered point clouds.
We focus the review on existing methods in quadric fitting
and then go on to show how they can be used in a variety of
applications in Computer Graphics.

Quadric fitting. The popularity of quadrics has led to many
research papers on fitting them to unordered data points.
Methods in this area can be broken in to two main areas,
either minimising the algebraic or geometric distance of
each point to the surface. The former is simpler, since it is
the value computed by evaluating the implicit equation itself
(defined in Equation 1). Geometric distances are formulated
in terms of Euclidean distances between the points and the
surface, methods in this area produce a fit which favours
each point equally, although methods tend to be iterative due
to the complex relationship between the implicit equation
and the solution set.

One of the most popular methods to use a geometric
distance is due to Taubin [25], who approximates the true
distance in terms of the normalised Euclidean distance to
the quadric surface. Knowledge of the explicit parametric
equations of the surface can be useful for more compact
least squares parameter estimates [1–3, 8, 15, 18, 22]. Fast
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estimation of the closest point the surface to a general
point in space is described in [21], who also make use of
RANSAC to add robustness to outliers.

Finding a least squares estimate based on the algebraic
distance yield fast and numerically stable solutions which
can be solved using matrix algebra. In this case, literature in
the area seeks to constrain the surface to lie on a particular
surface shape, such as an ellipsoid e.g. [7, 9, 12, 20]. The
work of Li et al. [12] shows how to fit ellipsoids and Dai et
al. [5] present a similar method for fitting to paraboloids.

Bayesian probabilistic methods exist for fitting general
quadrics, for example, Subrahmonia et al. [24] show how to
fit by casting a probability distribution over the geometric
Taubin errors. Their use of prior is to avoid overfitting or
parameters which produce a minimal error but undesirable
results.

Quadric fitting applications. Quadric fitting has been
applied to many important graphics applications. In
the context of shape approximation, Cohen-Steiner et
al. [4] presented a variational shape approximation (VSA)
algorithm, where a set of planar proxies are iteratively fitted
to the input mesh based on Lloyd’s clustering on mesh faces,
resulting in a simplified mesh representation.

To better approximate curved parts and sharp features,
Wu and Kobbelt [27] extended the previous approach by
using proxies other than planes, where various types of
quadrics, such as spheres or cylinders, are allowed. Another
extension of the VSA algorithm was presented in [28] by
using general quadric proxies. For surface reconstruction,
quadric fitting has been used to better represent the
underlying geometry and improve the reconstruction
quality. Schnabel et al. [23] presented a RANSAC-based
approach to fit different types of quadrics to noisy data. Li
et al. [13] further improved the reconstruction quality by
optimizing the global regularities, such as symmetries, of
the fitted surface arrangements. Further from joining the
geometric primitives, it is also possible to create an implicit
surface using a Multi-level partition [16]. This kind of
approach can help to smooth the resulting surface in regions
which have not been accurately modelled.

In shape analysis, local geometric features
(e.g., curvatures) which are invariant under certain
transformations benefit a lot of from quadric fitting. A
common approach is to fit quadrics to a local neighbourhood
so that differential properties can be estimated with the help
of the fitted surface [10].

The use of computer vision for robotic application allows
the use geometry fitting algorithms for estimating object
properties for physical interaction, such as the curvature of
an object [26]. Segmenting objects with primitive surfaces

is also possible [19], allowing a robot to discriminate
between surfaces before planning.

Our method assumes a probability distribution over
the algebraic errors, and results in a compact matrix
computation for the maximum a-priori estimate of the
parameters given the data points. The use of a prior
allows us to choose specific primitives from the collection
of quadric surfaces.

3 Bayesian Quadrics

We begin by defining what a quadric is, and then extend
it with the use of a noise model. We define a conditional
distribution which provides the likelihood of the data given
the parameters, from which we infer the probability of the
parameters with the use of a suitable prior.

Quadrics are polynomial surfaces of degree two, which
are a variety given by the implicit equation,

zTAz + bTz + c = 0 (1)

with A a M × M matrix b an vector, and c a scalar, for
values of z ∈ RM .

Before defining more notation we note that A can be
assumed symmetric, without loss of generality, the details
of this are explained in Appendix A. Positive definiteness is
determined from the eigenvalues. Letting ψ denote the each
element of A, b and c. Further, let θA denote the values in
ψ that correspond to the values in A, i.e.,

θA = [A11, . . . , AMM , A12, . . . , A(M−1)M ]T (2)

and then,

ψ =

 θA
b

c

 (3)

The data from the input point cloud is collected in to a
data matrix X = [x0, . . . ,x`, . . . ,xN ]T , so that,

x = (z21 , . . . , z
2
M , 2z1z2, . . . , z1, . . . , zM , 1)T (4)

where x is an arbitrary column of X , and,
x ·ψ =zTAz + bTz + c (5)

In order to use Bayesian statistics, an additive noise model
is assumed on each of the data-points i.e. we assume that

Xψ = ε (6)

where ε ∼ N (0, I) is a single draw from a unit multivariate
Gaussian distribution.

In order to solve the matrix equation Xψ = 0, without a
prior onψ one can find the eigenvector corresponding to the
smallest eigenvalue of XTX . If we consider the following
eigenvalue problem,

XTXv = sv (7)

it is sufficient to find an eigenvector v with associated
eigenvalue s, with s = 0. Existence of such a solution
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is guaranteed if the matrix XTX is singular. In practise,
however, we take the smallest eigenvalue.

The solution to Equation 7 is a least squares solution
of the equation ||Xψ||2 = 0 since the value ||Xψ||2 is
minimal when all of the partial derivatives with respect to
ψ are zero. Considering,

∂

∂ψ
(||Xψ||2) =

∂

∂ψ
(ψTXTXψ) (8)

=2XTXψ (9)

Setting Equation 9 equal to zero and dividing out the
constant, one can see that a minimal solution using
eigenvalue decomposition is a least-squares estimate.

The least squares estimate introduced above places no
constraint on the matrix A, and therefore can produce a
matrix with negative eigenvalues. If one wishes to ensure
that the matrix is an Ellipsoid, for example, A is required
to have a full set of positive eigenvalues. This is what
motivates our use of Bayesian statistics. Not only does the
noise model explicitly consider Gaussian errors, but it also
allows us to enforce prior knowledge on the parameters. We
extend the least-squares solution by introducing the model
in Equation 6 and then use Bayes law, which allows us to
combine the likelihood of the data p(X|ψ) with a prior p(ψ)

in order to produce the posterior.
p(ψ|X) ∝ p(X|ψ)p(ψ) (10)

The distribution p(X) is constant with respect to the
parameters ψ and so we replace it with the proportionality
operator (∝). This is useful because traditionally, one would
compute p(X) =

∫
ψ
p(X|ψ)p(ψ) which can be intractable.

Certain properties are maintained across proportionality,
for example, the maximum of p(ψ|X) is the same as the
maximum of κp(ψ|X) for any κ. Since we only seek a
maximum a-priori estimate of the parameters, we only use
equivalence of distributions up to proportionality.

With a careful choice of prior (discussed in Section
4) one can find the maximum a-priori estimate of the
parameters given the data by finding zeros of the log-
posterior derivatives. In the context of fitting a general
quadric, and following from Equation 6, we assume additive
Gaussian noise on equation (1) in which case the likelihood
is taken to be,

p(X|ψ) = N (Xψ|0, I) (11)

In other words, the errors in computing Equation 1 are
jointly Gaussian, with a spherical unit covariance I . The
assumption of a spherical covariance is equivalent to saying
that the variables are independent, provided the parameters
ψ. This is true, since the error from the original surface of
one point tells us nothing about the error of a neighbouring
point. The covariances are assumed to be identical as a
matter of simplicity. The identity is chosen rather than some

scalar multiple, since the parameter becomes superfluous
when the prior is introduced. The hyper parameter σ
(introduced later in the text) provides all of the information
necessary to model the surface.

It would be possible at this point use a prior for the
vector ψ. Rather than doing this we introduce a bijection
between A and ψ through the vector θ defined in Section
3. This allows the hyperparameters to be set in terms of the
matrix rather than the somewhat unintuitive values of ψ. In
fact, using a matrix normal on A with scalar parameters is
equivalent to assuming a multivariate Gaussian on the first
elements of ψ.

We only place a prior distribution over the matrix A since
it contains information about the shape of the surface. This
is discussed in detail in Section 7, with the choice of hyper-
parameters discussed more in Section 4.

The Matrix Normal distribution is defined as,
MN (A|W, U, V ) = κe−

1
2 tr(V

−1(A−W)TU−1(A−W))

(12)

where, W, U, V ∈ RM×M and,

κ =
(

(2π)np/2|V |n/2|U |n/2
)−1

(13)

The posterior is then found by multiplying Equation 11
by Equation 12 to give,
p(ψ|X) ∝N (Xψ|0, I)MN (A|W, U, V ) (14)

∝e− 1
2 ||Xψ||

2

e−
1
2 tr(V

−1(A−W)TU−1(A−W)) (15)

If we then choose U = V = σI , and ensure that W is
diagonal and symmetric, the posterior can be simplified to,

p(ψ|X) ∝e− 1
2 ||Xψ||

2

e−
1

2σ2
tr(ATA−2WA+W 2) (16)

∝e− 1
2 ||Xψ||

2

e−
1

2σ2
(tr(ATA)−tr(2AW)+tr(W 2))

(17)
Taking the log natural and then the first partial derivatives

yields,
∂lnp(ψ|X)

∂ψ
= −1

2

∂

∂ψ
||Xψ||2−

1

2σ2

∂

∂ψ
tr(ATA)− 1

σ2

∂

∂ψ
tr(WTA)

(18)

Before solving the vector derivatives, we first take note of
the matrix derivatives for a symmetric A and W (see [17]
for more details),

d(tr(WTA))

dA
=W +WT −W ◦ I (19)

d(tr(ATA))

dA
=2(A+AT −A ◦ I) (20)

The operator ◦ is the Hadamard product for matrices,
and produces a matrix of equal size with element wise
multiplication, for example, if S = Q ◦ R then Sij =

QijRij for each i and j. More intuitively, Equations 19
and 20 represent a doubling of all of the the off diagonal
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elements and leaving the diagonals as they were. Since A is
symmetric we change notation for the derivatives and set,

Â =A+AT −A ◦ I (21)

Ŵ =W +WT −W ◦ I (22)

The final derivative can then be calculated as,

∂lnp(ψ|X)

∂ψ
=−XTXψ − 1

σ2

[
θÂ
0

]
+

1

σ2

[
θŴ
0

]
(23)

In the final step we separate ψ from X and σ by the
distribution of multiplication over addition. Hereψ depends
on A and θÂ on Â. Let the matrix J be a diagonal
matrix which takes a value of 1 on the diagonal when the
corresponding value of θÂ is a diagonal element, and 2

otherwise. Setting the partials to zero it then follows that,(
XTX +

1

σ2

[
J 0

0 0

])
ψ − 1

σ2

[
θŴ
0

]
= 0 (24)

Rearranging yields,

ψ =

(
σ2XTX +

[
J 0

0 0

])−1 [
θŴ
0

]
(25)

4 Choice of prior

We use a matrix normal prior rather than a Wishart
or inverse Wishart prior for the matrix A. The Wishart
distributions are commonly used, well principled, and
suitable for use with empirical data. However, computing
a maximum a-priori estimate in a similar fashion to
the previous section leads to a solution that must be
determined by search, as opposed to the closed form of
Equation 25. The requirement that Wishart and inverse
Wishart matrices are symmetric positive definite is another
limitation, particularly if cylinders or hyperboloids are
necessary. Section 7 discusses how to construct a mean
matrix W in order to favour different shapes of surface.

The prior is only cast over the matrix A since the
parameters b and c contain information about the center and
also the width of the resulting surface. These values are
also coupled, in the sense that a change in center affects
both b and c. Section 6 discusses how to extract the center
and width from the parameters, but their relationship is
pathological. Constraining A alone provides just enough
information on the shape of the surface to ensure that it does
not become a hyperboloid, without affecting the quality of
the fit.

The matrices U and V determine the variance of the
matrix A from the mean W . Smaller values more strongly
favour the mean as opposed to the data. For our experiments
we simply choose the parameter σ ∈ R+, which gives
control over how close the matrix A is to the identity. The

value σ is free, in the sense that it can be chosen arbitrarily
or depending on a larger dataset. The results in Section 8
describe how it is chosen for our experiments, however, it
could also be computed using a training set, which contained
prior information about the variance of the observed quadric
from the mean.

5 3D data

The results in Section 3 are theoretical, in the sense that
they can be applied to data of arbitrary dimension. This
section provides explicit formula for 3 dimensions. We
note that the same principles apply for 2 dimensional data,
allowing us to model ellipses and hyperbola.

The parameters A and b can be written as follows,

A =

 a11 a12 a13
a12 a22 a23
a13 a23 a33

 , b =

 b1
b2
b3

 (26)

In this case ψ is defined as,

ψ =

 θA
b

c

 (27)

where,
θA = [a11, a22, a33a12, a13, a23]T (28)

The matrix X is the quadratic data matrix,
X = [x0, . . . ,xN ] (29)

where,
xi = (z21i, z

2
1i, z

2
3i, 2z1iz2i, . . . , z1i, z2i, z3i, 1)T (30)

The matrix J is then taken to be,

J =

[
I 0

0 2I

]
(31)

and,

θŴ =

[
1

0

]
(32)

6 Parametrisation

The quadric can be parameterised by finding the
transformation between the canonical shape, such as the unit
sphere, and the resulting surface.

Consider the following,
(x− µ)T Λ(x− µ) = τ (33)

Multiplying out and rearranging leads to,
xT Λx− µT (Λ + ΛT )x+ µT Λµ− τ = 0 (34)

If we then take,
A =Λ (35)

b =− (Λ + ΛT )µ (36)

c =µT Λµ− τ (37)
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Cylinder Ellipsoid Hyperboloid Hyperbolic section Paraboloid Plane

Fig. 1 A collection of canonical quadric shapes.

it can be seen that Equation 1 takes on a canonical form
of yTWy = 1 after an affine transformation of the data.
Where W is a diagonal matrix with entries contained in the
set {1, 0,−1}.

For an ellipsoid, the matrix W is the identity. Faces and
vertices on a unit sphere are generated using a spherical
coordinate system, and we transform only the vertices.
Letting v be an arbitrary vertex on the unit sphere, and
USUT = A be the eigen decomposition of A (since A is
Hermitian UT = U−1). It follows that,

v̂ = U

(
S

τ

)− 1
2

v + µ (38)

where v̂ is the required ellipsoid vertex. The same principle
can be taken for any canonical shape, including cylinders,
ensuring that the principal axis is aligned with the zero entry
of W .

Alternative methods exist for computing the solutions
of Equation 1, isosurface algorithms for example. A
parametric approach is beneficial for its speed, however it
then also requires algebraic methods for merging with other
surfaces; which can become complicated.

7 Eigen decomposition

The shape of the quadric can be determined by analysing
the eigenvalues of A.

Since A is real and symmetric it is a special case
of a Hermitian matrix, and so it follows that all of the
eigenvalues are real. In the case of a symmetric positive
definite matrix all of the eigenvalues are positive, and so
the quadric forms an ellipsoid. If any of the eigenvalues
are zero then the axis of the corresponding eigenvector is
indeterminate, in the case of 2 positive eigenvalues this is a
cylinder, for example. A single negative eigenvalue leads to
a hyperboloid.

The final classifications can be obtained by studying
the canonical form of the quadric introduced in Section
6, yTWy = 1, where y is an affine transformation of
the arbitrary data values z, and W is a diagonal matrix.
Multiplying this equation out for different combinations of
sign on the diagonal ofW reduces to a scalar equation which

can be compared to studied quadratic forms, as presented in
Andrews and Sequin [2].

It is important to note that Equation 1 is not only invariant
to scale, but also negation, in the sense that multiplying the
whole equation by a scalar α ∈ R does not change the
solution set. Consider the following expansion,

zTAz + bTz + c = 0 (39)

⇐⇒ α(zTAz + bTz + c) = 0 (40)

⇐⇒ zT (αA)z + αbTz + αc = 0 (41)

Further, let A = USUT be the eigen decomposition of
A, then αA = UT (αS)U . This means that a scaling
and negation of the eigenvalues of A only affects the other
parameters, but not the solutions, e.g. a full set of negative
eigenvalues yields the same solution as a full set of positive
eigenvalues. Since the sign of the eigenvalues of A are the
same as the sign of the diagonal entries of W we can relate
them to the shape of the surface.

Shape Positive Zero Negative
Ellipsoid 3 0 0
Cylinder 2 1 0
Paraboloid 2 1 0
Plane 0 0 0
Hyperboloid 2 0 1
Hyperbolic section 1 1 1

Tab. 1 A table showing the relationship between eigenvalues and shape of the
corresponding quadric.

A range of different surface shapes are attainable in this
way, for example, a hyperboloid can be made from two
negative and one positive eigenvalue, which is the same as
two positive and one negative eigenvalue. A table showing
the classification of the surface with the eigenvalues is
shown in Table 1, and represents only a sample of the
possible combinations. We note that the parameters b and
c do also have an affect on the shape, for example, if b = 0

and we have one positive eigenvalue, and two zero, the
resulting shape is not a paraboloid but a pair of planes. A

5



6 Beale et al.

Original Point Cloud Original Ellipsoid Li and Griffiths [12] No Prior

Matrix normal prior with varying σ

σ = 1 σ = 10 σ = 20 σ = 40

Fig. 2 A collection of ellipses that have been fit to the data. The bottom row shows the results of fitting with a prior, and the top right shows the results of fitting with
no prior. The first two images are the point cloud and the ellipsoid that they were generated from.

collection of examples of these shapes can be seen in Figure
1.

8 Results

The results are broken in to two scenarios. Firstly it is
shown that the method is able to perform on data drawn
from simulated quadrics, ellipsoids with known parameters.
The algorithm is shown to perform on empirical data from
a collection of 3D point clouds. The results are compared
to quadric fitting without a prior and also against the work
of Li and Griffiths [12], who solve a generalised eigenvalue
problem similar to that of [7].

The work presented by Li and Griffiths is a candidate
example of a modern ellipsoid fitting algorithm, from the
larger set of algorithms available (e.g. [1–3, 8, 15, 18, 22]).
Our method is a Bayesian model, which allows us to provide
a parameter which expresses a measure of how close the
shape should be to a canonical shape, such as a sphere.
Rather than compare to all other algorithms we simply show
that a hard constraint in to an ellipse does not always fit
the data, particularly when there is a large percentage of it
missing or excess noise.

In the final section of the results we give an example of
a fit to a simulated hyperboloid, primarily to show that our
algorithm also performs on different surface types, it also
demonstrates the value in choosing different diagonals on
the mean matrix W .

8.1 Algorithmic complexity

One of the most attractive attributes of a direct method for
fitting, such as ours and [12] or [7], is its efficiency. A well
known alternative is to compute the squared Euclidean (or
geometric) distance between each point and the surface, and
then minimise the sum of squares [21]. This is difficult since
computing the Euclidean distance is a non linear problem,
see [6, 14] for more details, and the complexity is dependent
on a polynomial root finding algorithm. Minimising
the sum of squared errors in this way requires an non-
linear least squares algorithm such as Levenberg-Marquardt.
Computing the error alone is in the order ofO(NM3), and it
is a lower bound on the final fitting algorithm which involves
iteratively computing the error and parameter gradients at
each step. It is possible, however, to approximate the
distance function, as shown in [25] and [15], and fit using
generalised eigenvalues, or using a linear least squares
estimate; these methods have a much lower complexity, but
do not allow us to use a Bayesian prior when fitting.

The complexity of the algorithm presented in the paper is
represented in the computation of the scatter matrix XTX

in Equation 25, which is O(NM2), since the subsequent
matrix operations are much lower ( O(M3) at worst ). This
makes it an efficient option, particularly since the scatter
can be computed independently of the value σ. Faster
algorithms exist for computing covariances, for example
[11], at the expense of memory, although it may be generally
quicker to use parallel computation, such as a GPU, to

6
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improve performance.

8.2 Simulated data

We show the results on a simulated dataset. Data is drawn
from an ellipsoid of known dimensions, some of the data
is removed, and spherical Gaussian noise is added. We
show that with the correct choice of hyper parameters, the
Bayesian method fits best.

Figure 2 provides an example of fitting an ellipsoid to a
simulated data set, with missing data. In this experiment we
only use 30% of the training data from the original ellipsoid
and add Gaussian noise with a standard deviation of 0.01. It
can be seen from the results that a value of σ = 10 produces
a result most plausibly from the original, where the result of
fitting with no prior produces a hyperboloid. It is clear from
this example that for lower values of σ produce a result that
is closer to a sphere.

In order to determine the quality of the fit, we compare
the vertices on the original quadric with the fitted quadric
using the Hausdorff distance. Firstly, the distance between a
point xi ∈ X and a point cloud Y = {y0, . . . ,yN} is taken
to be,

%(xi, Y ) = min
j∈{1,...,N}

(|xi − yj |) (42)

The Hausdorff distance is then,
H(X,Y ) = max( max

i∈{1,...,M}
(%(xi, Y )),

max
j∈{1,...,N}

(%(yj , X)))
(43)

The first experiment is to show how each of the
algorithms perform when there is missing data. We generate
an arbitrary ellipsoid and remove N% of the data, and add
spherical Gaussian noise with 1e − 2 standard deviations.
The parameters of the ellipsoid are drawn as follows,

Λ ∼W(ω2I, 20) (44)

µ ∼N (0, ω2I) (45)

τ ∼N (1, ω2) (46)
With ω2 = 1e− 2. The parameters A, b and c are computed
as in Section 6. The percentage of data removed is varied
between 10 and 100, and we choose the hyperparameter
0.1 < σ < 30 which produces the best Hausdorff distance.
Using a multivariate matrix normal prior is compared with
(1) using no prior at all and (2) the ellipsoid specific, least
squares, method of Li and Griffiths [12].

The results of the first experiment can be seen in Figure
3. Our method consistently outperforms both methods,
although the distance drops below the standard deviation
in Gaussian noise in all methods after 60% of the data
is observed. Fitting without a prior also gives reasonable
results if enough of the data is observed.

In the second simulation experiment we demonstrate how
the method is robust to noise by varying the amount of
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Fig. 3 The Hausdorff distance for a varying amount of missing data.
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Fig. 4 The Hausdorff distance for a varying amount of Gaussian noise. The
shaded regions represent one standard deviation from the mean.

additive Gaussian noise added to each sampled ellipsoid,
denote the noise level as τ̂ . There is some relationship
between of size of the original ellipse to noise ratio and the
quality of fit. In order to demonstrate the quality of fit over
a range of values we sample 10 quadrics and compute error
statistics. In this experiment we use 100% of the points,
i.e. there is no missing data. The hyperparameter is fixed
at σ = 10. The results from the second experiment can be
seen in Figure 4. Our method produces a Hausdorff distance
which is comparable to [12] for lower values of τ̂ , as τ̂
increases the use of a prior proves to be beneficial. Although
fitting without a prior gives reasonable results when τ̂ is
small, it becomes very inaccurate when τ̂ is greater than
0.06. This tends to be due to negative eigenvalues in the
matrix A which produces a hyperboloid.

In order to show that the algorithm works for other types
of quadric surface we simulate a hyperboloid and remove a
percentage of the points. Three quadrics are fit to the data
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Original hyperbola Ellipsoid prior

No prior Hyperboloid prior

Fig. 5 A table showing the fitting of a hyperbola using a variety of different
priors. The original points are shown as black dots.

using different priors for each of an ellipsoid, no prior and
a hyperbola. For the ellipsoid the W = I and σ = 1e−6;
and for the hyperbola W = diag(−1, 1, 1) and σ = 10.
Notice that the variance on the ellipsoid needs to be low
enough or it will favor a different shape. The hyperboloid
hyper-parameter is aligned on the x-axis, this also true of the
simulated data, and represents our knowledge of the shape.
Fitting without a prior chooses the hyperboloid’s medial axis
to be aligned with the z-axis. The results of this experiment
can be seen in Figure 5. The original quadric is in the top
left of the figure. It is clear that using a hyperboloid prior is
the best option for this data.

8.3 Empirical data

We provide some examples which demonstrate our
algorithm on real data from point clouds extracted from
a visual structure from motion pipeline. In this scenario,
regions of the point cloud can be left without any
reconstructed points. A candidate example is shown in
Figure 6. A smooth surface must be fit to the roof of the
phone box, a challenge for most surface fitting algorithms
due the the noisy and shapeless extracted points. Previous
algorithms either do not fit at all, such as in Li and
Griffiths [12], or do not allow control over the curvature
of the data, which is the case when using no prior. The
surface gradient can be chosen to match the roof curvature
by varying σ and produces a final result as shown.

Some examples of the algorithm on point cloud data are
shown in Figure 7. The point clouds are computed from
a collection of photographs comprising a post box, rugby
ball and roof. The surfaces are visually plausible even when

Point cloud Extracted points Fit 1

Fit 2 Fit 3 Surface

Final surface

Fig. 6 Phone box data set. The top left shows the original point cloud and the
extracted points that a quadric must fit to. There are 3 examples with varying
sigma values and the final surface on the bottom row.

there are large regions of missing data, this is particularly
visible on the roof data, from which only the front is visible
in each of the photographs.

9 Conclusions

We conclude by observing that state of the art methods for
quadric fitting give reasonable results on noisy point clouds.
Our algorithm provides a means to enforce a prior, allowing
the algorithm to better fit the quadric that the points were
drawn from, particularly when there is missing data or a
large amount of noise. This has a practical use on real data
sets, since it allows a user to specify the curvature of the
surface where there are few points available.
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Fig. 7 Some examples of the quadric fitting algorithm on point cloud data.

A Symmetry of the matrix A

The matrix A is assumed symmetric without loss of
generality. This is possible since the function,

f : RM×M → RM (47)

A 7→ xTAx (48)

is not injective, for any x ∈ RM . For example, if we take,

B =
1

2
(A+AT ) (49)

which is a symmetric matrix, then,

xTBx =xT (
1

2
(A+AT ))x (50)

=
1

2
(xTAx+ xTATx) (51)

since xTATx is a scalar, it is also symmetric, and so,
xTATx =(xTATx)T (52)

=xT (xTAT )T (53)

=xTAx (54)

It then follows that,
xTBx = xTAx (55)

The choice of symmetry then follows, because ifA, b and
c satisfy, xTAx + bTx + c = 0, then so does B, and B is
symmetric.
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