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Figure 1: Image editing example. (a) An input image is decomposed using a Laplacian pyramid. The user paints into the coarse
image. The input image is projected to a low-dimensional representation and reconstructed from it. (b) Several samples are
generated conditionedon thepainted coarse image. (c) The regions of interest in (b) are composedwith the reconstructed image.

ABSTRACT
Variational Autoencoders (VAE) learn a latent representation of im-
age data that allows natural image generation and manipulation.
However, they struggle to generate sharp images. To address this
problem, we propose a hierarchy of VAEs analogous to a Laplacian
pyramid. Each network models a single pyramid level, and is con-
ditioned on the coarser levels. The Laplacian architecture allows for
novel image editing applications that take advantage of the coarse
to fine structure of the model. Our method achieves lower recon-
struction error in terms of MSE, which is the loss function of the
VAE and is not directly minimised in our model. Furthermore, the
reconstructions generated by the proposed model are preferred over
those from the VAE by human evaluators.
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1 INTRODUCTION
General purpose image editing packages such as Adobe Photoshop
and Gimp rely on simple image models which have no knowledge of
the objects in the scene. Accordingly, extensive knowledge is needed
by the user to successfully execute any non-trivial modification. To
create more intuitive editing tools, we need more powerful image
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models. In this paper we develop a model that contains detailed
knowledge of faces.

Intuitive editing controls allowmanipulation of latent attributes.
To model such attributes, we assume that the face image data lies
on a low-dimensional manifold embedded in a high-dimensional
space. By generating new images such that they lie on the manifold,
any point will result in a realistic image. Thus, editing becomes a
navigation task in the manifold.

DeepConvolutionalNeuralNetworks (DNN)haverecentlyshown
state-of-the-art results in image editing [20, 23] and manifold learn-
ing [10].Autoencoders [3] are trained to learnanon-linearprojection
of the image data into a low-dimensional latent space. Images can
edited by manipulating their representation in the latent space then
re-projecting back to image space.

Unfortunately Autoencoder models for image editing have two
majordrawbacks.First, thegenerated images tendtobeover-smoothed.
This effect is especially noticeable in DNNs that use mean squared
error metrics which do not correspond to human perception [12, 13].
For example, if an image with high frequency detail is translated
by one pixel it can have a large error, but a human might not be
able to perceive the difference. Second, scaling these methods to
high-resolution images has proven challenging, not least because
the number of parameters becomes very large.

We address these problems with the Laplacian Pyramid of Condi-
tionalVariationalAutoencoders (LapCVAE). This decomposes image
generation into a hierarchy of smaller tractable steps. We present
a novel loss function that allows the latent Gaussian distributions to
have arbitrary mean and variance, but can still be trained and sam-
pled efficiently. We evaluate our model on the CelebA [14] data-set.
We show that our network is able to generate compelling images,
and that each level in the hierarchy learns a useful representation,
as shown in Figure 1.

2 RELATEDWORK
There are two common families of deep generative architectures:
Variational Autoencoders (VAE) [10] and Generative Adversarial
Networks (GAN) [7].

Autoencoders [3] learn an encoder that transforms the image data
into a latent low-dimensional representation, and a decoder that
learns the inverse transformation. The model is trained to minimize
reconstruction error between the input and decoder output. In the
Variational Autoencoder (VAE) [10], the latent space is encouraged
to have a hyperspherical structure. Learning the parameters is made
tractable by employing a variational approximation for themarginal
likelihood of the data. The main drawback of VAEs is that they tend
to produce blurry outputs [13, 21]. Some hypothesis for this behav-
ior include, the use of an L2 loss for the reconstruction error [12],
and the assignment of high probability to points not present in the
training dataset, in an attempt to generalize when multiple modes
are present [6].

Generative Adversarial Networks (GAN) pose image generation
asaminmaxgame,whereageneratornetwork is trained to transform
vectorsof randomnoise into samples fromthe inputdatadistribution,
and a discriminator network is trained to distinguish between the
real data and the samples. Thus, the vector of noise becomes a latent
low-dimensional representation of the training data. GANmodels

arehard to train [17, 19], as the discriminator tends to converge faster
than the generator, and they are prone to oscillating behavior. There
have been attempts to stabilize the training procedure [17, 19]. Since
GAN are only concerned with the generation of plausible outputs,
they cope well with data with multiple modes. They can disregard
less commonmodes inorder to capture the remainingones [19].They
typically generate sharper results than the VAE, though training
the latter is more straightforward [6]. Hybrid schemes that combine
GANs and VAEs have also been proposed [2, 13].

Both of these architectures have been extended using coarse to
fine approaches: Zhang et al. [22] divide the GAN architecture into
two resolutions. Kolesnikov et al. [11] develop a method based on
explicit low to high resolution generation, andDenton et al. [4] build
a Laplacian pyramid of GANs. The PixelVAE model [8], extends
VAEs by adding PixelCNN [15] layers after the decoder to be able
to model very local texture details.

These networks produce latent spaces where the dimensions do
not map to human-interpretable variations in the output images. In
image editing, it is more intuitive to manipulate semantic attributes.
Indeed, a supervised approach to conditioning the output has proved
to increase the quality of the results [13, 21]. Conditional GAN [5]
add a feature vector, which encodes class labels. A similar approach
has been taken for VAEs [21]. Reed at al. [18] included position and
orientation as well as class attributes, which are encoded together
in a feature vector to control the location and characteristics of the
object. However thesemethods require the conditioning vector to be
provided as an input, which makes their general use less practical.

In general, GAN-based approaches are able to produce results of
higher quality that VAE-based techniques [6, 13, 21]. However, as
shown in Figures 1 and 9 begin able to reconstruct and sample new
images is an integral part of our model and its image editing applica-
tions. GANmodels are designed for sampling only, reconstructing
images requires indirect approaches, like applying costly optimiza-
tion procedures or training additional networks [23]. Additionally,
GAN networks are notoriously hard to train and are prone to drop
modes present in the training data [17, 19]. For these reasons, we
focus our attention on VAE-based techniques.

3 VARIATIONALAUTOENCODER
Wefirstprovideabrief reviewof theVariationalAutoencoder (VAE)[10]
before extending it to multiple resolutions in Section 4. The VAE
consists of (i) a decoder or generator model, p(x|z;θ ), which mod-
els the probability distribution of the input data x conditioned on
the low-dimensional representation z in a latent space and (ii) an
encoder or recognition model, q(z|x;ϕ), which maps in the other
direction. Both models are described using deep neural networks,
with parameters θ andϕ respectively.

During training we estimate these parameters such that the mar-
ginal likelihood of the training data, p(x;θ ), is maximized under a
variational Bayesian approximation:

log[p(x;θ )]=DKL[q(z|x;ϕ)| |p(z|x;θ )]+LVAE , (1)

where the variational lower bound is

LVAE =Eq(z |x;ϕ)[log p(x|z;θ )]−DKL[q(z|x;ϕ)| |p(z;θ )]. (2)
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Figure 2: LapCVAE architecture for sample generation. A point in latent space zk+1 is sampled from a normal distribution and
decoded to generate a coarse image. The image is encoded (dashed cyan arrows) to compute its particular latent mean µk+1
and variance σk+1, and a networkMk is used to estimate the mean µ̃k and variance σ̃k for the finer level. A new point in latent
space zk is sampled and the high-frequency image is generated conditioned (dotted yellow arrow) on zk+1. This is added to the
upsampled (green arrow) coarse image. The process is repeated until the final result is generated.

In Eq. 1, the left-hand side denotes the log likelihood of the data,
and the first term on the right-hand side measures the distance be-
tween the approximate encoding distribution and the true posterior.
In the variational lower bound, the first term is the reconstruction
error (the log probability distribution of the decoder given q(z|x;ϕ)),
and the second term is the divergence between the encoder distri-
bution and a known prior.

The assumption is that the recognition model q(z|x;ϕ)will be a
good approximation of the intractable posterior p(z|x;θ ), therefore
making the intractablenon-negativeKLdivergence inEq. 1 approach
zero. Thus, maximizing the bound will be approximately equivalent
to maximizing the marginal likelihood of the data p(x;θ ) under the
model.

To facilitate computation of the gradients during training, the
approximate posterior is defined by a diagonal Gaussian, with mean
and variance as a function of the input data

q(z|x;ϕ)=N(µ(x),σ2(x)I). (3)

The addition of the auxiliary noise vector ϵ is known as the “repa-
rameterization trick” [10], and it allows the sampling of z to be
differentiable

z=µ(x)+σ (x)⊙ϵ, (4)

where µ andσ are functions of x, ϵ ∼N(0,I) is an auxiliary random
noise vector and ⊙ denotes element wise product.

The choice of prior for p(z) is a Gaussian distribution with zero
mean and unit variance

p(z;θ )=N(0,I). (5)

This straightforward prior is used because it simplifies the KL di-
vergence term in the right-handsideof equation2 to

∑J
j (1+log(σ

2
j )−

µ2j −σ
2
j ), where J is the dimensionality of z.

4 LAPLACIAN
VARIATIONALAUTOENCODER

In this section we present our model, the Laplacian Conditional
Variational Autoencoder (LapCVAE). Similarly to the LAPGAN [4]
model, the image is generated in a coarse-to-finemanner by treating
it as a Laplacian pyramid. At each stage the network only generates
details at a specific scale that are added to an upsampled estimate
of the image given by the preceeding levels. In this model, the loss
function explicitly penalizes errors in generating the high frequency
images rather than the overall image reconstruction. The model
architecture during generation and training for a pyramidwith three
levels is shown in Figures 2 and 3.

A Laplacian pyramid is an invertible image decomposition, de-
scribing an image as a set of images which encode high-frequency
details at different scales. To generate aK level pyramid, a blur and
downsample operator d(·) is repeatedly applied to the input image
x to create blurred images [b0,b1,···bK ], with b0=x. The image hk
at level k of the Laplacian pyramid is computed as the difference
between the blurred image at level k and an upsampled version of
the blurred image at the next level

hk =bk −u(bk+1), (6)

whereu(·) is an upsample operator, and the residual is used for the
last level, hK = bK . To reconstruct an image x from its Laplacian
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Figure3:LapCVAEarchitectureduring training.Animage isdecomposed (redarrows) into itshigh-frequencyand lowfrequency
components. The low-frequency is downsampled (gray arrows). Each VAE learns how to generate the high-frequency ground
truth image that receives as input (blue arrows). The encoder also receives as input the composed image generated from the pre-
vious levels (dottedorangearrows).Thegenerated image is re-encoded tocompute themeansandvariances for theMk networks.

pyramid we recursively apply

xk =hk +u(xk+1), (7)

where the recursion starts with xK =hK and ends with x=x0.
In our model, a series of VAEs are used to generate the images in

the Laplacian pyramid

hk ∼pk (hk |zk ;θk ), (8)

where pk (·) is the decoder of the kth VAE, zk is an encoding for the
high frequency image hk , and θk denotes the decoder parameters.
For each decoder, a corresponding encoder, zk ∼ qk (zk |hk ;ϕk ), is
defined as part of the VAE.

4.1 Conditioning
To ensure the generated images are coherent across scales, both the
encoder and the decoder must be conditioned with the result from
the previous level

zk ∼qk (zk |hk ,u(xk+1);ϕk ), (9)
hk ∼pk (hk |zk ,u(xk+1);θk ). (10)

This formulation conditions the generative process on the previ-
ous scale via the upsampled imageu(xk+1), but a superior approach
for the decoder is to condition the generation on all of the previous
latent variables

hk ∼pk (hk |zk ,zk+1,···,zK ;θk ). (11)

In ourmodel the encoder only receives the imageshk andu(xk+1),
which are concatenated along the channel dimension, and the re-
sulting tensor is used as input for the kth network, as shown by
the orange arrow in Figure 3. The decoder inputs consist of latent
vectors, zk ,zk+1,···,zK , which are also concatenated, as shown by
the yellow arrow in Figure 3.

4.2 Loss function
The loss function for each VAE in the pyramid is defined as:

L=Eqk (zk |hk ,u(xk );ϕk )[log pk (hk |zk ,zk+1,···,zK ;θk )]−

λkDKL
[
qk (zk |hk ,u(xk+1);ϕk )| |p(zk ;θk )

]
, (12)

where λk is a scalar hyper-parameter that serves as a tradeoff be-
tween the reconstruction loss and the distance from the encoding
prior. For the reconstruction loss we measure the error between
the input Laplacian pyramid images, and the ones generated by the
network, as shown in black arrows in Figure 3.

4.3 Latent space prior distribution
Hoffman and Johnson [9] discussed the need for better priors in VAE
networks.Takingadvangateof ourpyramidarchitecture,wepropose
a novel Gaussian prior. In similar spirit as Gulrajani et al. [8], our
prior encourages the latent space of a given level to be a transforma-
tion of the coarser level’s latent distribution. The prior distribution
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for our model is defined as

p(zk ;θk )=N
(
Rk (µk+1;ξk ),Sk (σk+1;ωk )

)
, (13)

where µk+1 and σk+1 are the mean and standard deviation of the
latent point in the coarser level as in eq. 4,Rk (·) andSk (·) are a family
of transformation functions parametrized by ξk andωk .

For the coarsest level in the pyramid the standard VAE prior de-
fined in equation 5 is used. For simplicity,wewill useMk (·) to denote
the pair of functions Rk (·) and Sk (·).

Toensureequivalentdistributionsat train time (where theoriginal
image is available) and test time (where it is not), µk+1 andσk+1 are
givenbyencoding the reconstructed image frompk+1(·)withqk+1(·).

Using the parameters defined by Mk gives more flexibility to
the latent space distribution in the finer levels of the pyramid. As
the means and variances of the Gaussian distribution are image de-
pendent, the distribution of the latent space can be regarded as an
mixture of Gaussians.

We approximate theMk functions using shallowmultilayer per-
ceptron networks. The parameters ξk andωk can be jointly learned
with minimal overhead during training, by minimizing equation 12.

5 RESULTS
We evaluated two versions of our model on the CelebA [14] dataset,
using64×64and128×128 images taken fromthealignedandcropped
version of the dataset. The dataset consists of 202,599 images of faces,
we use 80% of the images for training and 20% for testing.We trained
twomodels, with four Laplacian levels for the 64×64 and with five
for the 128× 128, where each downsampling operator halves the
image size, i.e. for the 64×64 version the input size for each VAE is
64×64, 32×32, 16×16 and 8×8 pixels.

The mean squared error (MSE) between pixels was used as the
reconstruction cost in the loss function. The size of the latent space
for each level of the pyramid is set to 64 for the 64×64 network, and
nz= [128,128,64,64,64] for the larger model. I.e. the small model has
a combined dimensionality for the latent space of 256, and the large
model of 448.

The value of λk , the weight for the KL divergence term forMk ,
acts as a trade-off between the reconstruction and the sampling qual-
ity.We performed a greedy search starting at the coarsest level of the
pyramid for the value that would yield reasonable samples and re-
constructions. The results shown in this section useλ= [10,0.1,0.01]
for the 64×64model, and λ= [100,100,0.1,0.01] for the 128×128.

The model was implemented in Tensorflow [1] and trained on
a single Nvidia Titan X. The whole pyramid model takes approxi-
mately 8 hours to train for the 64×64model and 14 for the 128×128.
For more details on the network architecture please refer to the
supplementary material.

5.1 Comparison with related work
We compare our model in terms of image quality and complexity
to VAE [10], VAE/GAN [13] and PixelVAE [8]. The PixelVAEmodel
extends VAEs by adding PixelCNN layers after the decoder. We use
the two level version of the model. VAE/GAN is a hybrid of VAE
and GAN, which consists of an encoder, decoder and a discriminator.
The authors replace the L2 reconstruction loss, with a loss in fea-
ture space and an adversarial loss. For PixelVAE and VAE/GANwe

Input 128

VAE

VAE/GAN

PixelVAE

Ours

VAE 128

Ours 128

Figure 4: Comparison of image reconstruction results for dif-
ferent AutoEncoder architectures on the test data. VAE/GAN
and PixelVAE add additional details in the images that do
not necessarily correspond to the input. Our architecture
produces sharper images than VAE. This is more noticeable
in the last two rows that show results for the 128×128models.

trained the models using the code provided by the authors without
anymodifications to the architecture. TheVAEwere trainedwith the
same latent space dimensionality and similar number of parameters
as our models.

5.1.1 Reconstructions. Examples of reconstructions are shown
in Figure 4. VAE reconstructions are blurrier than the othermethods,
but are able to capture the main features in the faces. PixelVAE and
VAE/GAN produce sharper results, however the added detail does
not necessarily correspond with the input images. For PixelVAE this
is due to the local nature of the autoregressive PixelCNN layers, and
in VAE/GAN due to the inclusion of the adversarial loss. Our model
is able to produce sharper images in comparison to VAE.



CVMP 2017, December 11–13, 2017, London, United Kingdom G. Dorta et al.

Model Reconstruction
error

Network
parameters

VAE [10] 22.78±4.64∗ 6.58×107

VAE/GAN [13] 30.49±7.32∗ 4.69×107

LapCVAE
Without-M

22.19±4.80 6.54×107

LapCVAE 20.60±4.81 6.55×107

VAE [10] 128×128 20.75±4.40∗ 1.68×108

LapCVAE 128×128 20.61±5.15 1.66×108

Table 1: Quantitative comparison of model complexity and
reconstruction error, measured as the mean of the square
rootof theMSEwith standarddeviation.Models trainedwith
this errormetric are denoted by a ∗ next to their error value.

Quantitative results are presented in Table 1, measured as the
mean and the standard deviation of the square root of the MSE over
all images, with pixels in the range [0,255]. The network complexity
is measured in floating point operations. We do not provide a mean
reconstruction error for PixelVAE, given how costly it is to gener-
ate images with this method, around 40 minutes for a batch of 64
images. LapCVAE both with and without theM functions are able
to reconstruct images with lower error than VAE and VAE/GAN.

At the 64×64 resolution the effects of using the Laplacian archi-
tecture instead of a VAE are rather subtle. However, the advantages
of using ourmodel becomesmore evident as the resolution increases.
The PixelVAE and VAE/GANwere designed by the authors to only
handle 64×64 images, and due to GPU RAM constrains and need
of parameter tuning we were unable to extend them to 128×128.
Our model is less effective at representing the colors in the images,
yet it is able to better capture sharp features and small details. For
example, note in the first row of Figure 4 how the gaze and mouth
are better reproduced by our model.

5.1.2 Human evaluation of reconstructions. To further demon-
strate the advantages of ourmethod,weperforma small user study to
evaluate the perceptual quality of the reconstructed images.We com-
pare 128×128 reconstructions of VAE and LapCVAE.We performed
two different experiments where four participants evaluated 500
images each. In the first experiment, the participants were presented
with the reconstructions of the same image by bothmethods and had
to choose the onewith the highest quality. In the second experiment,
the participants were presented with the reconstructions together
with the original image andwere asked to choose the reconstruction
that better matched the original. For both experiments the order in
which the two reconstructions were shown was randomized.

For both experiments our reconstructions were preferred over
the competingmethod by a large margin, as shown in Table 2. These
results seem to indicate that the reconstructions obtained with our
method, despite being similar in terms of reconstruction error (see
Table 1), are superior to the reconstructions obtained with VAE. The
addeddetail andsharpnessvisible inour reconstructions is important
in human perception of image quality.

Model
Human preference %

Without original With original

VAE [10] 128×128 15.61±8.14 26.30±7.35

LapCVAE 128×128 84.39±8.14 73.70±7.35

Table 2: Human evaluation of pairs of reconstructions from
VAE and our model, with and without the input image.
Images generated with our model are preferred over the
competingmethod.

VAE

LapCVAE

Figure 5: The samples from our model and VAE on the
128×128 architecture. The samples from LapCVAE appear to
be as varied andwith similar quality as the ones fromVAE.

5.1.3 Samples. Some samples from our model are shown in Fig-
ure 5. The main features of the face are seen clearly, yet the back-
ground and hair are noticeably blurry. The samples present some
variety of pose and style, and they appear to be similar in terms of
quality to VAE samples.

In order to test that the network did not overfit, the nearest neigh-
bours in the training set for a number of samples are shown in
Figure 6. The similarity between the samples and the training data is
measured in pixel space using the mean squared error. The samples
are distinct from their neighbors,which demonstrates that themodel
is not just memorizing the training images.

Our pyramid architecture explicitly encodes coarse to fine infor-
mation in the latent representation learned by the model. This effect
is shown in Figure 7, where the z for the coarser levels are fixed, and
a number of images are produced by sampling the remaining levels.
Less variation in the samples is observed as more levels are fixed.

During training the loss function contains two terms, the recon-
struction and the KL divergence, which are potentially conflicting.
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Sample Neighbors

Figure 6: Samples from our 128 × 128 method with nearest
neighbors in the training data, which show that themodel is
not simplymemorizing the images in the dataset.

After convergence, the sample quality can be improved by retraining
theM networks (see Section 4.3), while keeping the rest of themodel
fixed. A comparison of samples generated before and after retraining
M is shown in Figure 8. Some improvements, such as extra sharp-
ness or smoother color transitions can be noticed in the retrained
examples. The samples generated for any other figure in the paper
were generated without retrainingM .

5.2 Image editing
Our method allows partial sampling, where the coarser levels of the
pyramid are kept fixed and the finer levels are sampled, as shown
in Figure 7. This enables novel image editing applications that are
not possible with VAE. Image editing examples using our 128×128
model are shown in Figures 9 and 1.

For an input image, the user can select a region to be modified
(Figure 9) or edit the coarse level image directly (Figure 1). From a
coarse input, a number of novel images are sampled from the net-
work, providing a large variety of compatible results. The final image
can the be composited back [16] easily as the generated images are,
by construction. compatible with the input, i.e.the patch is already
mostly aligned and it has similar colors.

For example, in Figure 1 right, our method is used to remove the
sunglasses from input image .On the coarse level, the area around the
eyes is painted with skin tone, and several samples of faces without
sunglasses are generated from it. The region of interested is then
composited with the reconstructed image.

Base Samples

Figure 7: Sampling with zk · · ·K fixed at different levels of the
pyramid with the 128×128model. The Base columns contain
the blurred and upsampled image generated by the fixed
levels, and the remaining images are generated by sampling
different latent vectors at the rest of the levels z0· · ·k−1. As
expected the samples are consistentwith the coarse base and
the variety decreases asmore levels are fixed.

LapCVAE

LapCVAE
Retrain M

Figure 8: Sample comparison with our 128 × 128 model
and retraining M after convergence. After retraining the
generated images are sharper and contain less artifacts.
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Input Coarse Input Selection Reconstructed Input Coarse Input Selection Reconstructed

(a)

(b)

(c)

Figure 9: Image editing example. (a) An input image is decomposed using a Laplacian pyramid. The user selects an area to
be edited. The input image is projected to a low-dimensional representation and reconstructed from it. (b) Several samples
are generated conditioned on the coarse input creating interesting variations. (c) The selected regions from the samples are
composed with the reconstructed image.

6 CONCLUSIONS AND FUTUREWORK
In this paper we presented Laplacian Pyramid of Conditional Varia-
tional Autoencoder (LapCVAE), a conditional multi-scale extension
ofVariationalAutoencoder (VAE)models. Our generative network is
able to produce reconstructions and samples, which are sharper than
VAE results and at higher resolution than alternativemethods. It can
be trained in a greedy fashion and it provides more flexibility, as it
allows partial sampling of only some of the levels of the pyramid.

In terms of limitations, the images produced by our network lack
some of the overall colors that a VAE of similar complexity is able
to capture. Moreover, the total training time is doubled if the greedy
training procedure is used, and the image generation is less efficient
as there are several levels to sample from.

There are a number of opportunities for future work. Ourmethod
still fails to capture local high frequency detail. To overcome this
limitation, a PixelCNN network could be added after each VAE in
the pyramid, in a similar fashion as Gulrajani et al. [8]. A different
approach to improve the quality of the generated images is to use a
perceptual or adversarial loss for the reconstruction error, analogous
to the work in Larsen et al. [13]. The effects of using our latent space
loss could benefit from a formal mathematical study.
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