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Abstract

Conditional Random Fields (CRFs) are used for diverse
tasks, ranging from image denoising to object recognition.
For images, they are commonly defined as a graph with
nodes corresponding to individual pixels and pairwise links
that connect nodes to their immediate neighbors. Recent
work has shown that fully-connected CRFs, where each
node is connected to every other node, can be solved ef-
ficiently under the restriction that the pairwise term is a
Gaussian kernel over a Euclidean feature space. In this
paper, we generalize the pairwise terms to a non-linear
dissimilarity measure that is not required to be a distance
metric. To this end, we propose a density estimation tech-
nique to derive conditional pairwise potentials in a non-
parametric manner. We then use an efficient embedding
technique to estimate an approximate Euclidean feature
space for these potentials, in which the pairwise term can
still be expressed as a Gaussian kernel. We demonstrate
that the use of non-parametric models for the pairwise in-
teractions, conditioned on the input data, greatly increases
expressive power whilst maintaining efficient inference.

1. Introduction

The discrete label Markov Random Field (MRF) and
Conditional Random Field (CRF) are common models used
throughout Computer Vision [15], in particular for low level
vision tasks: e.g. image denoising, optical flow, binocular
stereo, segmentation, etc. These models are often solved as
a discrete energy minimization task over a graph containing
nodes corresponding to individual pixels. The basic model
consists of the combination of a set of unary terms, defined
for each node individually, and a set of pairwise terms, de-
fined as a function of two nodes that share an edge. A first
order Markov assumption is often used where each node
shares an edge only with its immediate neighbors, e.g. the
graph may be a 2D grid over the pixels with each node con-
nected to its four (or eight) nearest neighbors. This is usu-
ally to keep the inference tractable in either computational
complexity or memory requirements.

The pairwise interactions impose a smoothness cost on

the final labeling. The move from MRF models to CRF
models [12] allows these terms to be conditioned on the in-
put data and thus the terms become dependent on the struc-
ture of the image. Whilst good results have been obtained
using only neighboring pairwise terms, they may only be
used to express a limited range of priors. The need to learn
richer and more expressive prior models from training data
has lead to a demand to solve models that contain higher-
order cliques (potential functions of more than two nodes)
or those which are able to capture the interplay between
nodes that are spaced further apart — non-local pairwise
interactions.

In this paper we consider the latter. We investigate the
addition of non-local pairwise potentials. This corresponds
to increasing the connectivity of the graph by adding edges
between nodes that are not immediate neighbors. During
inference, increasing the number of edges in the graph often
leads to a dramatic scaling in computational resources, both
for algorithms based on graph-cut, move making techniques
and message passing methods, e.g. [3, 7, 8].

To overcome this limitation, recent work has produced
a number of approximate inference techniques making use
of cross bilateral filtering. In particular, the work of
Krähenbühl and Koltun [10] proposed a method for per-
forming inference in a fully-connected pairwise CRF (every
node is connected to every other node) by taking a mean-
field approximation to the original CRF. Here, the message
passing is performed as a Gaussian bilateral filtering pro-
cess under the limitation that the pairwise potentials be ex-
pressed as a weighted sum of Gaussian kernels over a Eu-
clidean feature space. This allows approximate maximum
posterior marginal (MPM) inference to be performed very
efficiently for a multi-label CRF.

The method of [10] directly addresses the issue of in-
creasing graph connectivity since it allows for a fully-
connected CRF. However, thus far, the applications have
been limited by the requirement that the pairwise terms con-
sist of a weighted sum of Gaussian kernels over a Euclidean
feature space. The work of Vineet et al. [16] demonstrated
that the pairwise terms may be extended to include non-zero
mean mixtures of Gaussians, along with an estimation pro-
cedure to fit the model parameters, at the expense of a num-
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ber of extra filtering operations (one per Gaussian mixture)
at each iteration that slows down the inference procedure.

In this work we generalize the pairwise potential from
a simple parametric model to a conditional non-parametric
model that is learnt from training data. Our learning ap-
proach is to approximate directly the conditional joint prob-
ability distributions (from the training data) in a straight for-
ward density estimation process. This probability model
may be expressed as an image specific (evaluated at test
time), sparsely sampled dissimilarity measure. We then use
an efficient embedding technique to estimate a Euclidean
feature space that approximates this measure. The pairwise
terms may then be expressed as Gaussian kernels in this new
feature space and thus the inference procedure of [10] may
proceed unaltered. This allows us to generalize the pairwise
terms to a general, non-linear dissimilarity measure that is
not required to be a distance metric. In particular we show
that the use of non-parametric models for the pairwise inter-
actions greatly increases the expressive power whilst main-
taining the efficient inference of [10].

2. Previous Work
As discussed in § 1, our work makes use of the ef-

ficient mean-field inference method of Krähenbühl and
Koltun [10] and is thus related to other inference methods
based on bilateral filtering including work on image denois-
ing [9] and other low-level vision tasks such as stereo and
optical flow [5, 11] and semantic object segmentation [16].
In particular there has been some work on approximating
more complex pairwise terms with [16] learning the param-
eters of a non-zero mean Gaussian mixture model in the
bilateral space and [11] approximating a truncated penalty
function as a mixture of exponentials. In this work we gen-
eralize further by approximating an arbitrary dissimilarity
measure which can be non-parametric and conditioned on
each specific test image, as well as training data, by finding
an embedding into a Euclidean feature space that best ap-
proximates the dissimilarities and automatically minimizes
the dimensionality of the embedded space to match the
complexity of the provided dissimilarities.

The work of [16] also addressed the issue of initializa-
tion when performing inference on a CRF under a mean-
field approximation. Whilst this is not a topic we address
in this work, the insight and suggestions are equally valid
for our method. This topic was also looked at in [18]. The
subsequent work of [17] provides a method for extending
the filter based inference algorithm for models that include
potentials defined over certain types of higher-order cliques.
Again, this extension is not discussed in this work but the
findings are equally applicable and could be used with the
feature spaces presented here.

Recent work has investigated extensions to pairwise
CRFs under alternative inference methods, in particular the

works of Nowozin et al. [13] and Jancsary et al. [6] are
state-of-the-art decision tree based algorithms with tractable
training and inference, especially efficient in the case of [6].
Our approach shares the two key desirable properties of
these works. Firstly, we overcome the limitation of a fixed
neighborhood structure with the fully-connected model and,
secondly, we remove the requirement for the pairwise terms
to have a simple parametric form by allowing arbitrary non-
parametric dissimilarities to encode the pairwise potentials
that may be learnt from training data and also the dissimi-
larities can be conditioned on the input data at test time. We
demonstrate that our approach confers a competitive perfor-
mance with these approaches both in terms of accuracy and
computational efficiency. We would refer the reader to the
references contained in [6, 13] for further details of research
into parameter estimation in CRF models with parametric
pairwise terms.

The work of [14] proposes a scribble-based method for
selecting objects in images based on dense CRFs [10]. Two
standard non-Euclidean distance metrics over patches are
used (χ2 and Earth Mover’s Distance) and an embedding
into a Euclidean feature space is employed to incorporate
them into the dense CRF framework. In contrast, we pro-
pose to generalize away from a data-driven heuristic dissim-
ilarity measure, rather incorporating non-parametric dissim-
ilarities, learnt from training data.

3. Efficient Mean-Field Inference in Fully-
Connected Pairwise CRFs

In the recent work of [10], Krähenbühl and Koltun
described an efficient algorithm to perform inference on
a fully-connected CRF in linear time (in the number of
nodes) by using a mean-field approximation to the original
CRF and pairwise edges with potential functions defined as
Gaussian kernels in some feature space. Let us denote the
set of labels as x = {xi} with a label defined for every
pixel in the set of pixels P , such that i ∈ P , in a given im-
age I. Each label is taken from a label space L such that
xi ∈ L. If we denote the exact CRF distribution as P (x | I)
then the mean-field approximation is given as the distribu-
tion Q(x) that minimizes the KL-divergence KL(Q ||P )
with the constraint that the distribution Q must be decom-
posed as the product of a set of independent marginals
Q(x) =

∏
iQi(xi). The Gibbs energy for this model is

given as

E (x | I) =
∑
i∈P

ψi (xi) +
∑
i,j∈P
i6=j

φij (xi, xj) (1)

where we have P (x | I) = 1
Z(I) exp (−E (x | I)).

In [10] the authors demonstrate that the distribution Q
can be recovered by an iterative update equation that corre-
sponds to a message passing algorithm on the graph. The



number of edges in a fully-connected CRF dictates that tra-
ditional message passing algorithms would be intractable in
computational time and resources. However, if the pairwise
terms in the Gibbs energy are expressed as

φij (xi, xj) = µ(xi, xj)

M∑
m=1

wm km

(
f
(m)
i , f

(m)
j

)
(2)

where µ(·, ·) is a constant symmetric label compatibility
function and
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is a Gaussian kernel with precision Λm in some feature
space f

(m)
i ∈ F (m), for the mth kernel, then the message

passing step consists of a low pass filtering operation under
a Gaussian kernel for which efficient approximations exist,
e.g. [1]. This allows each update iteration to be completed
in linear time with respect to the number of nodes rather
than quadratic time which would be required for traditional
message passing. We refer the reader to [10] for further
details. Throughout this paper we use the Potts model1

µ(xi, xj) = [xi 6= xj ] for the compatibility function, M
denotes the number of kernels used, and we use Λm = I ,
the identity matrix, since the feature space can always be
transformed under an arbitrary covariance.

Updating all the messages in a single step removes the
convergence guarantees that are normally associate with
mean-field approximations. However, the authors of [10]
observe good convergence properties experimentally and
we found convergence would usually occur in fewer than
20 iterations. After running the algorithm for a fixed num-
ber of iterations, to get into a stable fixed state of the mean
field, we extract the Maximum Posterior Marginal (MPM)
solution by selecting the label that maximizes the associated
factor xi = arg maxl∈LQi(xi = l). We also note that the
fixed point of the mean field update equations is dependent
on initialization and not a globally optimal solution.

4. Non-Parametric Pairwise Potentials
In order to allow for more expressive pairwise potentials

we would like to relax the restriction on Gaussian paramet-
ric models, [10, 11, 16] and allow for more complex, non-
parametric models that may be learnt from training data and
conditioned on the input.

In this section we describe how we overcome the limita-
tion that the pairwise potentials be expresses as a Gaussian
kernel, as in (3). We do this in three stages. Firstly, we
present our desired pairwise potentials as density estimates

1Here we use [xi 6= xj ] as an inequality indicator function.

of the conditional pairwise probability (learnt from training
data, conditioned on a test image). We then express these
probabilities as a dissimilarity measure between nodes in
the CRF. Finally, we use an efficient approximate embed-
ding technique to find a set of feature spaces that encode the
dissimilarity measure as the Euclidean distance and thus the
desired pairwise potential under a Gaussian kernel in this
space.

4.1. Pairwise Conditional Probabilities

The pairwise potentials in a CRF encode conditional
probabilities between pairs of nodes. Our approach is to
estimate these probabilities directly from a set of training
data T . We make this conditional for each node at test time
by first looking at the local area (an image patch si) around
a particular node i in the test image I and then finding sim-
ilar patches in the training images. For each label l in the
label space L, we want to estimate the conditional probabil-
ity P (xj = l | xi = l, I, T ) for the nodes j around node i,
i.e. the conditional local density distribution of the label l.

Density Estimation: Any density estimation or regression
technique could be used to approximate these conditional
probabilities; in particular, we make use of a non-parametric
approach by referring to the training data directly and per-
forming a kernel based density estimate. We take the mean
of the indicator images for the label l from the training im-
ages that contain a patch similar to si. By indicator image
we mean a binary image equal to one for every pixel be-
longing to class l and zero elsewhere. In practice this corre-
sponds to extracting much larger patches from the training
indicator images for class l, that are centered on patches
similar to si, and finding the mean.

We place a prior that dictates the range over which we
are able to infer useful information in the pairwise potential
by applying a Gaussian window of size σw in pixel distance

gwin(i, j) = exp
(
−‖ui − uj‖22

/ (
2σ2

w

))
, (4)

where ui and uj are the pixel coordinates of nodes i and j.
This is equivalent to using a Gaussian kernel to perform the
density estimation.

This procedure identifies local correlations in the train-
ing data that will then be encouraged to occur in the output
by means of the pairwise potentials. For example, if a par-
ticular image patch always has label l above it in the train-
ing data then the indicator images will always be set to one
above this patch. Thus, the mean of all the training indica-
tor images, centered on the patch, will be close to one. This
indicates that the pairwise term should have strong connec-
tions to the pixels above for class l.



4.2. Probabilities to Feature Spaces

We now have a method for determining the non-local
pairwise potentials around node i for image I. In order to
be able to use these potentials to perform the efficient in-
ference discussed in § 3 we must be able to express them
in the form of (2); more specifically, the Gaussian kernel
of (3). This corresponds to finding a set of feature vectors
(i.e. an embedding in a feature space) where the distance
between the feature vectors of each node under the Gaus-
sian kernel is equal to the conditional probability densities.
We can achieve this, in a similar fashion to [14], by creating
an appropriate dissimilarity measure, based on the condi-
tional probabilities, and finding an embedding such that the
Euclidean distance in the embedded space matches this dis-
similarity measure.

Dissimilarity Measure: If we denote the dissimilarity mea-
sure as d (i, j, I, T ) then we may express our pairwise term
as having the form

φij (xi, xj) = [xi 6= xj ] exp (−d (i, j, I, T )) . (5)

Let us consider the training data for a single label l ∈ L.
We let

exp (−dl (i, j, I, T )) =

gwin(i, j)P (xj = l | xi = l, I, T ) (6)

⇒ dl (i, j, I, T ) =

− log
[

gwin(i, j)P (xj = l | xi = l, I, T )
]

(7)

where this distance between landmark location i and vary-
ing j, under label l, is the conditional distribution of the
label l given the training data T the test image I.

Feature Space Embedding: The dissimilarity measures
obtained for each label may now be embedded into a fea-
ture space F (l) to provide a set of feature vectors {f (l)i }, for
each node i and label l, such that∥∥∥ f (l)i − f

(l)
j

∥∥∥2
2
≈ dl (i, j, I, T ) ∀ i, j . (8)

The set of embedded vectors may then be used as a fea-
ture space in (3) to perform inference using the filtering ap-
proach. Thus we have generalized the constraints on the
pairwise potentials to the requirement that they be expressed
as (5) where the functions dl (i, j, I, T ) are dissimilarity
measures which must satisfy dl (i, i, I, T ) = 0. Whilst it
is not a strict requirement that dl(·, ·) be a distance func-
tion, we note that when the distance function is embedded
in the form (5) the resulting approximate distance will be
symmetric and therefore a symmetric distance will always
be used to perform inference.

4.3. Approximate Euclidean Embedding

We make use of the Landmark version of the Multidi-
mensional Scaling (MDS) algorithm [4] to compute the fea-
ture vectors {f (l)i } from the dissimilarity measures as an
embedding in p-dimensional Euclidean spaceRp.

The landmark variant (LMDS) has the advantage over
classical MDS of removing the need to store a complete
pairwise dissimilarity matrix D

(l)
ij = dl (i, j, I, T ) that

would have a storage complexity of O(N2), where N =
|P| is the number of pixels in the test image I. Instead, the
Nyström approximation ofD(l)

ij is used and allows us, under
reasonable sampling conditions, to provide only a subset of
the dissimilarity matrix.

For a p-dimensional embedding, LMDS required the
complete set of dissimilarities between p+ 1 points, known
as the landmarks. In practice, due to potential degeneracies,
the number of landmark points needs to be c > p+ 1 to en-
sure that they span the p-dimensional space. The remaining
points have their positions triangulated from these landmark
points, requiring the dissimilarities between the landmarks
and the other points.

The required dimensionality of the space (p) can be de-
termined by analysis of the the eigenvalues computed dur-
ing the LMDS embedding. Further details of MDS, LMDS
and the eigenvalues are provided in the supplemental mate-
rial.

Random Sampling: The use of LMDS means that
we don’t have to estimate dl (i, j, I, T ), and hence
P (xj = l | xi = l, I, T ), for all nodes i. Instead we pick
sampling locations C (c = |C| points uniformly distributed
over the test image) and estimate P (xj = l | xi = l, I, T ),
and the corresponding dissimilarities, for i ∈ C and all j.

Illustration: Figure 1 provides an illustrative example from
the case of a binary label set |L| = 2, with the labels as fore-
ground text and background, used on the task of shape com-
pletion in our experiments in § 5. We are provided with a
binary shape pattern and an occlusion mask and wish to in-
fer the labels of the occluded pixels as foreground or back-
ground. In addition to the masked test image we are also
provided with a training database of images containing sim-
ilar statistical properties to our test data.

Consider a single sample location for the foreground la-
bel (orange); we want to compute the dissimilarity to all
other pixels. We look at the local patch (conditional region)
around the pixel, and find all the patches in our training
database that match with a low hamming distance. The dis-
similarities to the pixels in the wider region, determined by
the window size σw, around our input patch should have
the same label distribution as the regions around the train-
ing patches. Therefore, we take the mean of the set of larger
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Figure 1: Random sampling to build the distance matrix. The
local neighborhood of a random sample is used to condition a
lookup into the training data to provide a non-parametric estimate

of the potential dissimilarity measure to the wider image.

patches from the training indicator images, for the appropri-
ate label, as our conditional probability. We then multiply
by the Gaussian window function and take the negative log
to obtain the required dissimilarity (7).

This process is then repeated until sufficient samples
have been gathered to proceed with the embedding using
LMDS. We then perform the same operation for the back-
ground label, for example taking the sample shown in blue
in Fig. 1. This provides us with a set of feature spaces F (l)

which we use with a Potts model in (2), with M = |L|, to
filter each label in its own feature space. Figure 3 shows
some actual examples of the raw probability estimates from
one of our experiments.

Final Model: Our final model is given by

E (x | I) =
∑
i∈P

ψi (xi) + β −

w
∑
i,j∈P
i6=j

∑
l∈L

[
xi = l,

xj = l

]
exp

−
∥∥∥ f (l)i − f

(l)
j

∥∥∥2
2

2σ2
f

 , (9)

where we have used [xi 6= xj ] = 1 − [xi = xj ] and β is a
constant that may be neglected. Please see the supplemen-
tary material for further algorithmic details.

5. Experiments
Since our contribution is in the use of pairwise poten-

tials, a direct and unbiased evaluation of our work is best
obtained by removing the dependence of the results on any
unary terms in the CRF. We demonstrate the effectiveness
of our approach by performing in-painting on binary im-
ages. Here, we have a task where no unary is applicable
in the occluded region and we must use expressive pairwise
potentials to learn the wider neighborhood statistics that en-
code the shape distributions. The task we perform was pro-
posed by Nowozin et al. [13] and used in [6]; we follow the
procedure the authors describe within these papers and the
supplementary materials. We used 3 × 3 pixel patches as
the conditional region for all tests.

Method Accuracy

Random Forest [13] 67.74 %

MRF (1 level DTF) [13] 75.18 %
Gaussian MRF (1 level RTF) [6] 74.19 %

Decision Tree Field [13] 76.01 %
Regression Tree Field [6] 77.55 %

Our Result (σw = 7 pixels) 82.04 %

Table 1: Quantitative comparison of test results for the KAIST
Hanja2 database with small occlusions. We provide results for
the accuracy (as the percentage of pixels correctly labeled) for fill-
ing in the masked regions on unseen test images after training on
a separate training set. We adopt the same methodology as [13, 6]
splitting the input data in a 2:1 training to test ratio with the di-

mensions of the masked regions drawn from [5 . . . 20] pixels.

Input Truth RF MRF GMRF DTF RTF Ours

Figure 2: A qualitative comparison for the KAIST Hanja2
database with large occlusions. We fill in the grey region from
the first column using the following algorithms: (RF) A baseline
Random Forest. (MRF) A DTF with a depth of 1 (local neigh-
bors). (GMRF) A Gaussian MRF, an RTF with a depth of 1. (DTF)
The Decision Tree Field [13]. (RTF) Regression Tree Field [6].
(Ours) The result of our algorithm. The results in the central

columns are taken from [13] and [6].

The KAIST Hanja2 Database: In this experiment we
make use of the KAIST Hanja2 database: a collection of
handwritten Chinese characters. The dataset displays a rich
degree of shapes and variation with some characters re-
peated often and others with only single examples. We ran-
domly split the database into 300 images used for training
and 150 for testing. We occlude a centered rectangular re-
gion of each of the test images in two different tasks, the
locations of the occlusions are obtained as detailed in [13].
The first task considers small occlusions with the mask di-
mensions drawn uniformly from the range [5 . . . 20] pixels,
and, the second task considers large occlusions with dimen-
sions from [20 . . . 40] pixels. The unary term is clamped to
the ground truth outside the occluded region and to an unin-
formative uniform distribution within the occluded region.

Table 1 gives the quantitative results for the small oc-



 

Figure 3: A sample of the dissimilarity measures used for a
KAIST Hanja2 example. We show some random sample loca-
tions for foreground (red) and background (blue) 3 × 3 patches
used as landmarks for the embedding. For each of the landmark
patches we find similar patches in the training data and then es-
timate the density of the appropriate class (foreground or back-
ground) centered on the patch. Two samples of the density esti-
mates are shown for each class; the colormap is black to white
with increasing density. The raw probability values are shown; we
apply a Gaussian window and take the negative log to obtain the

dissimilarity samples for embedding.

clusion task (evaluated as the percentage of pixels correctly
labeled). It provides comparisons with the Decision Tree
Field [13] and Regression Tree Field [6] methods, both of
which are considered state-of-the-art, and shows that our
method confers a favorable performance. We also note the
marked improvement of all the methods making use of in-
creased neighborhood ranges in their potential functions;
the low connectivity of the RF, MRF and and GMRF meth-
ods is indicative of this short coming.

Figure 2 provides the qualitative output for the large oc-
clusion test cases, again showing comparisons to the state-
of-the-art methods. Without any higher level inference (i.e.
attempting to classify the characters) it is a very challenging
problem to correctly recover the original character. Instead,
filling in plausible structure is indicative of good perfor-
mance showing that the model has captured the underlying
statistics of the training data and exploited the conditional
dependence on the input. We believe that our results are
reasonable for the nature of the characters even though they
may not accurately reconstruct the ground truth.

In Fig. 3 we provide an example of the conditional, non-
parametric pairwise potentials used for the KAIST Hanja2
database. The dissimilarity measures for the foreground and
background classes are observed to vary based upon the lo-
cal region around the sampling locations and we can see the
structure, learnt from the training data, that is promoted by
the potentials.

The Weizmann Horse Database [2]: In this dataset we
perform the same task but using silhouettes of horses from

Input Ours Truth Image [10] [14]

Figure 4: A sample of test results for completing silhouettes
from the Weizmann horse database [2]. We used 219 train-
ing images and 109 test images selected at random. We occluded
with the ‘large occlusion box’ parameters (from the Hanja2 evalu-
ation [13]) with the dimensions of the masked regions drawn from
[20 . . . 40] pixels. Methods [10] and [14] require the color images

which are not used by our method.

the Weizmann horse database [2]. We use the large occlu-
sion parameters from the KAIST test and allow the occlu-
sion box to move around in the test images. Figure 4 shows
a random selection of results ranked in decreasing accuracy
from top to bottom. Table 2 details the overall accuracy.

We compared our non-parametric model to the cross bi-
lateral model of [10] and an input-agnostic dissimilarity
used by [14]. The results obtained for [10] and [14] require
the original color image in order to calculate the pairwise
terms; our method makes no use of the color images during
training or testing. These value is included for compara-
tive purposes but the specific task is different since it is no
longer simply binary inpainting, rather guided inpainting.
The goal of [14] is robustness to inaccurate training. Con-
sequently, the resulting images for shape completion, Fig. 4,
do not consider the truth data to be reliable outside the mask
region, however, we compute the accuracy only within the
masked region.

Our result is shown to afford comparable accuracy to the



Method Accuracy

Potts Model 60.17 %

Cross Bilateral (Parametric) Model [10] 84.10 % *

χ2 Patch Distance Model [14] 89.87 % *

Our Result 89.78 %

Table 2: Quantitative comparison for the Weizmann Horse
dataset. The Potts model provides a baseline as a generic smooth
result. Both methods in italics (marked with an asterisk), the cross
bilateral model (gaussian kernel in color space) of [10] and the χ2

patch dissimilarity model of [14], needed the original color im-
age to evaluate the pairwise terms over the occluded regions. This
color image was not provided to our method during training or test-
ing. For all methods a window size of σw = 13 pixels was used,
the additional parameters for [10] were set to the values specified

by the authors.

methods of [10] and [14] without the need for the specific
color image to guide the CRF, making use of the shape train-
ing data instead. The Potts model serves as a baseline for
a simple smoothness prior. All results were obtained with
a window size of σw = 13 pixels; the increase over the
σw = 7 pixels for the Chinese characters is indicative of the
differing scales of the foreground objects.

6. Discussion

Timing: We compute the embedding using 80 landmark
samples and 10 dimensions in around 1s. As in previous
work, the inference is efficient, with 20 iterations in a sec-
ond. Both of these timings are on the horse examples. The
KAIST tests are slightly quicker. This could be improved
with parallel implementations, in particular the GPU may
help with filtering. The data lookup for the non-parametric,
conditional potentials is less predictable. In our examples,
the training data could be held in memory and accessed
quickly (around 2 seconds) using a kd-tree. Our efficiency
is comparable to the RTF [6], and superior to the DTF [13],
and our training process is simpler and more efficient.

Short- and Long-Range Interactions: In our experiments
we used the model of (9) with uninformative unary terms
over the occluded region. Figure 5 shows the relation-
ship between the window size and accuracy in performance
for the small occlusion test. The graph clearly shows the
boost in performance offered by increasing the neighbor-
hood range. At a window range of 2 pixels we are approach-
ing the performance of traditional MRF and CRF models
with local neighbors. We found the best performance at
σw = 7 pixels. Performance tails off as the range increases.
This is to be expected since the local conditioning of the po-
tentials is no longer valid over large distances; in addition,
at 35 pixels we are approaching the size of the characters
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Figure 5: The variation of accuracy with the spatial window
size for the KAIST Hanja2 database with small occlusions. We
observe a noticeable decrease in performance for small window
sizes (approaching the standard 4-connected CRF) demonstrating
the advantage of having a non-local pairwise potential. There is
also a drop-off in performance with large window sizes suggesting

that very long range potentials act as a hinderance.

themselves.
Figure 6(a) shows the variation in accuracy with the w

and σf parameters. We observe that the weighting w of
the pairwise term has relatively little impact but there is a
definite optimal value for the σf term. We kept the weight
w = 25 and σf = 0.1 terms constant for our other experi-
ments. The weight w is of little importance since we have
an uninformative unary term in the occluded region. The σf
plays a greater role due to the windowing process applied to
the pairwise potentials. Windowing the potentials shown in
Fig. 3 leads to uninformative tails (at large distances) for all
classes and the embedded approximation of the dissimilar-
ity measure will be less accurate in these regions. Chang-
ing the σf parameter to match the window helps provide a
sharper drop off in the edge potentials outside the windowed
region and leads to an improved accuracy.

The Embedding: We observed several advantages of using
LMDS, besides its relatively low computational complexity
and memory requirements. First, the number of landmark
points c is a simple parameter that may be used to trade-off
error for performance (both computational as well as mem-
ory). We observed that a few samples (we used c = 80
for a 10 dimensional feature space) are sufficient in practice
for producing embeddings with acceptable error (Fig. 6(b)).
Second, the intrinsic dimensionality of the feature space
may be discovered automatically as the number of positive
Eigenvalues in Λ(please see supplementary material).

Limitations: Whilst our approach provides state-of-the-art
performance and confers many benefits in the expressive
power of the non-local and conditional potentials. Under
the current model we learn a different feature space for ev-
ery label. This is clearly expensive for multi label prob-
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(b) Accuracy against c and p.

Figure 6: The variation of accuracy with the parameters of (9)
for the KAIST Hanja2 database with small occlusions. (a) We
observe that the performance is relatively invariant to the weight
parameter w but there is an optimal value of σf close to 0.1.
(b) We observe a slight improvement in accuracy as we increase
the number of landmarks c used but limiting the dimensionality of

the embedded space p has a greater impact.

lems with a large label set. Also we are currently neglect-
ing cross terms in that density estimating between different
labels can also be performed and encoded into the update
filtering at each iteration. The number of cross terms would
scale quadratically with the size of the label set.

Further Work: This work opens a number of avenues
for future investigation. In particular there are many op-
tions for estimating the conditional potential distances for
a wider variety of multidimensional complex data and to
improve scaling with larger training datasets. In particu-
lar non-parametric density estimators and regression tech-
niques may prove very useful for this task.

Conclusions: We have demonstrated how to condition ex-
pressive, non-local pairwise potentials on input data. Key to
our approach is the fast estimation of a feature space that is
specific to the test image. This embedding of the pixels in
feature space leads to an efficient mean-field inference in a
fully-connected CRF model, yet with a generalized under-
lying dissimilarity measure. Our method confers state-of-
the-art performance when compared to recent approaches
that perform inference on similar models.
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