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Figure 1: An example of an unstructured dataset: due to multiple instances and occlusions there is no clear way of aligning
the images via a global transformation, or indeed estimating a dense warping (one-to-one mapping) between them. However,
additional information, such as part labelling or segmentation of the bananas, can be used to align the data in the context
space (right hand side of the figure) and allow us to learn the subspace model of the appearance of the bananas; in this
example, the red and blue dots denote corresponding locations in the context space.

1. Relation to AAM
In this section we show that Active Appearance

Model [2] is another special case of Context-Conditioned
Component Analysis when a specific form of φ[·, ·] is
adopted. As a reference, we include a motivational example
of an unstructured dataset in Figure 1 explicitly demonstrat-
ing the mapping between locations in image and context
space.

1.1. AAM

We start by describing AAM. The AAM assumes that the
input consists of a set of images {xij}I,Ji=1,j=1 and a corre-
sponding set of x-axis and y-axis coordinates of the fiducial
points {uiq}I,Qi=1,q=1. (For example, for faces, the fiducial
points are points such as corners of the eyes, the tip of the
nose, chin, etc.)

Next, the mean coordinate of each of the fiducial points
is computed: {ūq}Qq=1. It is assumed that these coordinates
define the mean shape of the object, which serve as a “com-
mon template” for the images of the dataset.

The mean coordinates {ūq}Qq=1 are used as vertices of
a mesh with triangular faces computed by Delaunay trian-
gulation [3] or some other variation of it. Thus, each pixel
of the common template has corresponding spatial coordi-
nates, the triangle of the mesh and barycentric coordinates
to the vertices of the corresponding triangle.

All images are warped to this common template. This
is done with a piece-wise affine warp that maps each tri-
angle of the mesh from image i to the common template.
So, for each image i and its triangle τ , AAM computes the
affine transformation that maps coordinates of the vertices
of the triangle τ to the coordinates of the corresponding ver-
tices in the common template. Hence, the coordinates of the
pixel and the fiducial points {uiq}I,Qi=1,q=1 are used to deter-
ministically compute the pixel coordinates in the common
template.

Once all images are warped to the same template, the
vectorized representation of the warped images can be used
as input to a subspace model such as PCA. The subspace
models the appearance of the object. To fit the learned
model to a new image and its set of fiducial points, one must
compute the transformation from the common template to
the new image.

1.2. C-CCA

Next, we show that AAM is equivalent ot C-CCA when
a specific φ[·, ·] is adopted. As in the paper, we define the
form of φ[·, ·] as

φ [cij ,θf ] = a [cij ]
T
θθθf . (1)

So, image i has fiducial coordinates {uiq}I,Qi=1,q=1. Further-
more, the j-th pixel of image i has a pixel intensity of xij
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and it’s x-axis and y-axis coordinates vij . We define its
context vector as:

cij = [vT
ij (2)

uT
i1 . . .u

T
iQ (3)√

|vij − ui1|2 . . .
√
|vij − uiQ|2]T (4)

which is a concatenation of pixel’s coordinates vij (2 val-
ues), the coordinates of the fiducial points (2 × Q values)
and Euclidean distances to all of the fiducial points (Q val-
ues).

Let θf be a vector of size J×1, where J is the number of
pixels in the “common template”. First, assume that a [cij ]
returns a vector of size J × 1 that consists of zeros and a
single 1.

It follows that using the mean coordinates {ūq}Qq=1 and
the Delaunay triangulation, one can define such a [cij ] that
deterministically defines which index of the returned vector
has value of 1. This effectively maps every pixel of the input
image to the common template similarly to AAM.

Indeed, the first 2 + 2 ×Q values of cij (the pixel’s co-
ordinates and the coordinates of the fiducial points) can be
used to determine the triangle of the mesh’s triangulation
that the pixel belongs to. Furthermore, the last Q values
of cij (Euclidean distances to all of the fiducial points) can
be used to compute the barycentric coordinates of the pixel.
The barycentric coordinates can be used to deterministically
define which of the pixels in the common template xij cor-
responds to, which defines which index of the returned vec-
tor have value of 1.

Hence, such a [cij ] maps images to the common tem-
plate similarly to AAM. Thus, θf are equivalent to the com-
ponents of PPCA.

By a similar line of reasoning one can show that Layered
AAM [5] is also a special case of C-CCA.

2. Context vectors
As it was mentioned in the paper, the context vectors that

we use contain filter responses. For horses, cats and ele-
phants datasets, the filterbank consists of 15 filters (a subset
of Leung-Malik Filter Bank [6]), namely the first and sec-
ond derivatives of Gaussians in 6 orientations, Laplacian
of Gaussian at 2 scales and 1 Gaussian filter. For facades,
the filterbank consists of 8 Haar-like features at 2 different
scales. Figure 2 shows visualizations of the filterbanks.

3. Exploring Components
In this section we would like to demonstrate the compo-

nents that the model learns from the data.
Our model assumes the prior over the hidden variables to

be spherical, which is different from PCA, where the com-

(a)
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Figure 2: Visualization of the filterbanks. (a) Filters used
on horses, cats and elephants datasets. (b) Filters used on
facades dataset.

ponents are ranked by the singular value. Thus, for bet-
ter visualization of the components, we relearned the model
with a smaller F . The parameters are in Table 1.

Dataset I Test I F M K
Horses 200 95 8 3500 16

Table 1: Model Parameters.

We demonstrate the effect of moving along each of the
components in the positive and negative directions in Fig-
ure 3 and Figure 4. Notice the effect of the same compo-
nents on different poses: for example, the effect of φ[·,θ3]
is the brightness of the head and tail of the horse as shown
in Figure 3(f) and Figure 4(f). Similarly, φ[·,θ4] defines the
left-right change of the brightness of the horse as show in
Figure 3(g) and Figure 4(g).

4. Results
We show figures from the paper in a larger scale, with

more examples, and more results.
Figures 6 to 8 show appearance transfer results for horses

and cats.
Figures 10 to 13 show structured inpainting results for

each of the datasets.
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Figure 3: Moving along the components.

Figure 9 demonstrates dense correspondence computed
with SIFT flow [7], one of the techniques for solving im-
age alignment problem. The SIFT flow algorithm performs
poorly in these examples for several reasons. First, the ap-
pearance in SIFT space may not match due to the differ-
ence of textures. More importantly, the assumption of the
smoothness of the deformation field doesn’t hold for self-
occlusions or missing parts, which is especially relevant for
the cats example. The problems associated with this as-
sumption also hold for Compositional Model [8].
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Figure 4: Moving along the components.
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Figure 5: Visualization of the context vectors. (a) Part labels. (b) RGB Image. (c) Projections onto the first five princi-
pal components of the context vectors (the true dimensionality of the context vectors is 122 and 271 for horses and cats
respectively).



(a)

(b)

(c)

(a)

(b)

(c)

Figure 6: Appearance Transfer Results. (a) A subset of images of the horses training set [1]. (b) Reconstruction of the images
using the fitted model. (c) Reconstruction of the images using the fitted model with the fixed function weights hg , rotation
matrix R and translation vector t of the first (leftmost) image.
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Figure 7: Appearance Transfer Results. Rows top to bottom: (a) A subset of images of the cats training set [4]. (b) Recon-
struction of the images using the fitted model. (c) Reconstruction of the images using the fitted model with the fixed function
weights hg , rotation matrix R and translation vector t of the first (leftmost) image.



Figure 8: Appearance Transfer Results: For each column, rows top to bottom: (1) An image of the training set. (2-5)
Reconstruction of the image of another cat in a different pose using the fixed function weights hg , rotation matrix R and
translation vector t of the top row image.

Figure 9: Left to Right: Source image. Target image. The warping of the source image onto the target image using the
correspondence computed by SIFT flow [7]. The appearance transfer using C-CCA.



Figure 10: Image Inpainting Results for Horses (Test Set). Left to Right: Image from test set. Reconstruction of the image
using the fitted model. Input for inpainting (context vectors of all pixels are known). Inpainted result. Image from test set.
Reconstruction of the image using the fitted model. Input for inpainting (context vectors of all pixels are known). Inpainted
result.



Figure 11: Image Inpainting Results for Cats (Test Set). Left to Right: Image from test set. Reconstruction of the image
using the fitted model. Input for inpainting (context vectors of all pixels are known). Inpainted result. Image from test set.
Reconstruction of the image using the fitted model. Input for inpainting (context vectors of all pixels are known). Inpainted
result.



Figure 12: Image Inpainting Results for Elephants (Test Set). Left to Right: Image from test set. Reconstruction of the image
using the fitted model. Input for inpainting (context vectors of all pixels are known). Inpainted result. Image from test set.
Reconstruction of the image using the fitted model. Input for inpainting (context vectors of all pixels are known). Inpainted
result.



Figure 13: Image Inpainting Results for Facades (Test Set). Left to Right: Image from test set. Reconstruction of the image
using the fitted model. Input for inpainting (context vectors of all pixels are known). Inpainted result. Image from test set.
Reconstruction of the image using the fitted model. Input for inpainting (context vectors of all pixels are known). Inpainted
result.


