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Abstract

Many structured prediction tasks in machine vision have
a collection of acceptable answers, instead of one definitive
ground truth answer. Segmentation of images, for example,
is subject to human labeling bias. Similarly, there are mul-
tiple possible pixel values that could plausibly complete oc-
cluded image regions. State-of-the art supervised learning
methods are typically optimized to make a single test-time
prediction for each query, failing to find other modes in the
output space. Existing methods that allow for sampling of-
ten sacrifice speed or accuracy.

We introduce a simple method for training a neural net-
work, which enables diverse structured predictions to be
made for each test-time query. For a single input, we learn
to predict a range of possible answers. We compare favor-
ably to methods that seek diversity through an ensemble of
networks. Such stochastic multiple choice learning faces
mode collapse, where one or more ensemble members fail
to receive any training signal. Our best performing solu-
tion can be deployed for various tasks, and just involves
small modifications to the existing single-mode architec-
ture, loss function, and training regime. We demonstrate
that our method results in quantitative improvements across
three challenging tasks: 2D image completion, 3D volume
estimation, and flow prediction.

1. Introduction
Computer vision systems are typically trained to make

a single output prediction from a given input. However, in
many cases, there is more than one correct answer. Con-
sider the case of 3D projection in Figure 1. We wish to infer
what 3D shape projected to form a given 2D silhouette. The
training data suggests that there should be more than one an-
swer: some users identify the circle as being produced by a
sphere, while others hypothesized different sized cylinders,
viewed head-on. We assert that each of these interpreta-
tions is correct, and, depending on the application scenario,
different outputs may be required. However, a typical neu-
ral network predictor might make a single prediction which
averages together the modes present (Figure 1(b), top).
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Possible 
interpretations

(a) Many prediction tasks have ambiguous interpretations. For example,
giving a 2D rendering to a human, there are different possible 3D interpre-
tations.
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c = {0,  1,  2,  … }

(b) Standard CNNs trained under multi-modal labels tend to blur together
or ignore the distinct modes. We introduce a modification to standard neu-
ral networks that gives the user a control parameter c. Different values of
c produce diverse structured outputs for the same input.

Figure 1: Our easy modification enhances typical loss functions,
producing networks that predict multiple good answers, not just
one best-majority-fit output. Access to “minority” outputs is espe-
cially useful in applications dealing with ambiguous completions
or human preferences.

While many machine learning systems are able to pro-
duce samples at test time (e.g. [9, 17, 34]), we propose a
method which explicitly exploits diversity in training labels
to learn how to make a range of possible structured predic-
tions at test time. Our system is an add-on modification
of the loss function and training schedule that is compati-
ble with any supervised learning network architecture. Our
contributions allow for a network to take as input a test im-
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age x and a control parameter c. Where training time di-
versity exists, our loss encourages the network to find the
different modes in the label space. At test time, provid-
ing the same x with different values of c produces different
predictions (Figure 1(b)). Our method can be applied to any
supervised learning architecture and loss.

Our method is also applicable in cases where there is one
definitive ground truth answer. For example, a grayscale
image has a single ground truth colorization; however, for
most applications a user may be satisfied with a range of
plausible suggestions [26, 27]. Our method can predict di-
verse solutions at test time, even where only one label exists
for each training item.

Our main contribution is an architecture-modification
and loss which prevent mode-dropping. Mode-dropping
is a phenomenon recently observed in GAN training [37],
where regions of output space are not reached by predic-
tions from a model. We observe this effect in [23]; during
training, their method can result in some members of the
ensemble failing to receive any training signal. This occurs
when other ensemble members are much closer to the mean
of the output space. At test time, those ensemble members
fail to make a meaningful prediction. Our method avoids
this problem.

2. Related work
There is a large body of work that examines the cases

where labels for data are diverse, noisy or wrong [19, 30,
35]. Most of these, however, assume that the labels are a
noisy approximation of one true label, while we assume
they are all correct. Methods which make diverse predic-
tions can be roughly categorized as: (a) those which allow
for sampling of solutions; (b) ensembles of models, each of
which can give a different prediction, and (c) systems which
find diverse predictions through test-time optimization.
Sampling methods Where parameters are learned as para-
metric distributions, samples can be drawn; for exam-
ple, consider the stochastic binary distribution in the case
of Boltzmann Machines [1]. Restricted Boltzmann Ma-
chines [12], Deep Boltzmann Machines [34] and Deep Be-
lief Networks (DBNs) [13] are all generative methods that
learn probabilistic distributions over interactions between
observed and hidden variables. Such probabilistic networks
allow samples to be drawn from the network at test time
using MCMC methods such as Gibbs Sampling. This has
been used, for example, to sample 2D and 3D shape com-
pletions [8, 43]. Unfortunately, these sampling processes
are often time consuming resulting in models that are diffi-
cult to train (as the models scale) and expensive to sample.

Removing the stochastic nature of the units, the super-
vised learning scheme for DBNs leads to autoencoders [14]
that are easier to train but the directed model no longer
maintains distributions and therefore cannot be sampled

from. Variational autoencoders (VAEs) [17] use a varia-
tional approximation to estimate (Gaussian) distributions
over a low dimensional latent space as a layer in the pre-
dictive network. These distributions capture uncertainty
in the latent space and can, therefore, be sampled at test
time. However, the smooth local structure of the latent
space makes it unlikely to capture different modes; instead
the variational approximation is targeted towards complex-
ity control on the dimensionality of the latent space.

Generative adversarial networks (GANs) have an opti-
mization scheme which enables novel data to be sampled
[10], possibly conditioned on an input sample [29]. Unsu-
pervised control can be enabled with an extra input, which
is encouraged to correlate with the generated image [6].
This method is restricted to use with GANs, while our
method can be added to any supervised loss. Like [6],
though, we find the relationship between the controlling in-
put and modes in the output space automatically, and we
control the output space via an additional input (c).
Ensembles Ensembles of neural networks have been found
to outperform networks in isolation [20]. Typically, each
network is trained on all the training data, allowing random-
ness in initialization and augmentation to lead each network
to a distinct local minimum. Bagging, where each classifier
is trained on a random subset of the training data, can be
used to increase the variance of prediction from multiple
weak classifiers [5]. Alternatively, Liu and Yao [24] explic-
itly encourage diversity in the ensemble by the addition of a
variance term to the loss function that forces solutions apart
from each other, and similarly Dey et al. [7] train a sequence
of predictors explicitly to give diverse predictions. As far as
Dropout [38] can be considered to approximate an ensem-
ble [3], then its application at test time [9] can be considered
as drawing samples from a large ensemble.

Lee et al. [22, 23] introduce a loss which encourages
ensemble diversity. They backpropogate the loss for each
training example only through the ensemble member that
achieves the best loss on the forward pass. Each network,
over time, becomes an “expert” in a different field. Their
loss, which is based on [11], is related to ours. We dif-
fer in three ways. First, they train an ensemble (or quasi-
ensemble, ‘treenet’) of networks, while we make multiple
predictions from a single network, significantly reducing
the number of parameters. Second, their loss does not di-
rectly take advantage of training time diversity, while ours
handles cases both where we do and do not have multiple
labels for each training item. Third, as introduced in Sec-
tion 1, our approach prevents mode-dropping [37].
Test-time diversity Some methods explicitly enforce di-
verse modes at test time. For example, Batra et al. [4]
find diverse solutions for a Markov random field with a
greedy method which applies a penalty to each new solu-
tion if it agrees too much with previously discovered modes.
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Figure 2: A toy example showing our update formulation as applied to image segmentation. Here, the image x has four y labels associated
with it. (1) Forward pass On the forward pass, the same x is provided to the networkN times, each time with a different value for c. Each
of the outputs produced is different due to the different values of c. (2) Backward pass We associate each ground truth label y ∈ Y with
its best matching network output. This matching is indicated by the solid arrows. Losses are then backpropagated only for these values of
c. The paths along which gradient flows are shown by dashed arrows. (3) Next epoch When the same x and c values are passed to the
network on the next epoch, each prediction is now a little more like the ground truth image it was matched with.

This was subsequently developed to a more general solution
[18]. In contrast, ours learns at training time how to make
diverse predictions; each prediction is then made with a sin-
gle network evaluation.

3. Method
Typically, training data for supervised learning consists

of a set of pairs D = {(x,y)}. Each pair consists of an
input x, which in vision tasks is often an image, and the
desired output label y; for our structured prediction tasks,
y is multidimensional. Training the parameters of a ma-
chine learning system f then involves minimizing a loss l
summed over this set of data, i.e.

L =
∑

(x,y)∈D

l(f(x),y). (1)

In our work, we assume that for each x there is a set of la-
bels. Each training pair (x,Y) now comprises a single x
with a set of target values Y = {y1,y2, . . .yN}. For ex-
ample, for image segmentation each image may have had
boundaries drawn by multiple human labelers. Note that N
can be different for different training pairs. A straightfor-
ward modification of (1) to minimize the loss over Y is

L =
∑

(x,Y)∈D

∑
y∈Y

l(f(x),y). (2)

Unfortunately, using (2) explicitly (or averaging the label
set, which is often done in practice), results in predictions
being made that lie between modes in the label space. This
“mode collapse” effect has been observed when training
networks on ambiguous tasks like image completion [31].

Our model instead accepts as input x together with a con-
trol variable c ∈ C. Specifically, c is fed to the network

through concatenation with activations from both dense and
convolutional layers, and integer values for c are first con-
verted to a one-hot representation. At test time, users can
create different outputs for the same x by varying the value
of c (Figure 1(b)).

We assume that, during training, each y ∈ Y is a valid
output that we wish our system to be able to reconstruct
under at least one value of c. For a single x,y pair, the
value of c which produces a network output that most
closely matches y is argminc∈C l(f(c,x),y). We want
each y ∈ Y to be well reconstructed, so we penalize any y
which is not well reconstructed by f . Our loss is therefore

Ldiv =
∑

(x,Y)∈D

∑
y∈Y

min
c∈C

l(f(c,x),y). (3)

We show an illustrative example of an update for a sin-
gle (x,Y) in Figure 2. On the forward pass through the
network, the same x is passed with different values of c.
At this stage in the training, the network produces different
results for each value of c. We then associate each possible
label, i.e. each y ∈ Y with just one of the network outputs.
The losses for these ground truth labels are then backprop-
agated through the network to the appropriate value of c.
After the update, each value of c is more closely associated
with a different mode in the data. This update formulation
is a multi-label, single-network extension of [22, 23].

Equation 3 can be implemented easily. For each group of
inputs to the network, we compute a matrix measuring the
pairwise loss between each network output and each y ∈
Y . The min down each column gives the closest matching
prediction to each y. The sum over all such min values
gives the objective Ldiv.

Preventing mode collapse We sometimes find that when
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|C| is larger than the number of modes naturally present in
the data, then one or more values of c can produce poor so-
lutions. This occurs when, during stochastic training, the
modes in the label space are better captured by a subset of
c values, and therefore other values for c are never encour-
aged to produce any meaningful result. To remove this un-
desirable effect, and to help ensure that no predictions are
degenerate, we propose an additional term which ensures
that the worst performing prediction gets updated, regard-
less of its proximity to any ground truth label, as

Lcatchup =
1

|C|
∑

(x,Y)∈D

max
c∈C

min
y∈Y

l(f(c,x),y). (4)

The min in (4) finds, for each network prediction, the dis-
tance to its closest matching ground truth label in Y . The
max then ensures that only the value of c corresponding to
the largest of these losses is updated.

Our final training loss is simply L = Ldiv + βLcatchup,
where β is a parameter which trades off the quality of the
best reconstructions (Ldiv) with the worst (Lcatchup). All the
results in this paper are produced with β = 1; we examine
the effect of tuning this parameter in Section 4.1.

Learning without training-time diversity Given only a
single label for each training image, i.e. |Y| = 1, we can
still use our system to make diverse predictions. Our loss
function now becomes:

Ldiv =
∑

(x,y)∈D

min
c∈C

l(f(c,x),y). (5)

This shares similarities with a single-network version of the
multiple choice learning loss of [11, 22]. However, our for-
mulation shares parameters across each value of c, resulting
in considerably fewer parameters than an ensemble.
Architecture details We insert categorical c into the net-
work by converting to one-hot encoding, and concatenating
with the activations (Figure 6). We can also use continuous
or multi-dimensional values for c. A continuous c could
be useful for example when exploring continuous qualita-
tive artistic options, e.g. using a deep-learned ‘Photoshop’
to complete missing image regions. In these cases it be-
comes intractable to enumerate all possible values in a sin-
gle minibatch. Instead, we take a stochastic approximation
to (3), and set C as a set of samples from a user-specified
distribution. Our method is applicable to all supervised net-
work architectures, including those with skip connections,
dropout, and batch normalization.

4. Experiments
Most networks can be augmented to become a Di-

verseNet, so we perform experiments across a range of
datasets, loss functions, and applications, to demonstrate

the generalizability of this approach. We validate that it
copes with non-unique labelings and improves diversity
against competing diversity-seeking methods. Further, we
establish that our models have fewer parameters (almost as
few as a native network) and so are easier to train than meth-
ods like [23]. Nonetheless, we sacrifice very little accuracy
compared to single-best models (Note: like class-imbalance
problems, some reduction in raw accuracy is expected).
Evaluating diverse predictions Where only a single
ground truth answer exists, the k-best oracle [11, 23] is a
suitable scheme for evaluating diverse predictions. For each
input, k random predictions are made, and the one which
most closely matches the ground truth is chosen. This er-
ror is averaged over all test inputs to report the overall error
for a particular value of k. Sweeping k allows us to plot
a graph, where error typically reduces as k is incremented
and more predictions are made.

Where there are multiple ground truth answers for each
data point, a perfect algorithm would generate each of the
ground truth answers. An error is computed for each pos-
sible ground truth answer, where again we compare to the
closest match among k predictions from the model. The
final error is the mean of all these errors.

4.1. Comparing to baselines on MNISTOCC

We use the MNIST dataset [21] to demonstrate how our
system can be used to find distinct outputs where there is
ambiguity at training time. We create a modified occluded
version of the dataset, MNISTOCC, designed for training and
evaluating image completion where there are multiple cor-
rect answers (Figure 3). Each x in MNISTOCC comprises
an original MNIST digit, where all pixels are set to zero ex-
cept the 14 × 14 square in the top-left corner of the image.
For each x we must synthesize a diverse set of labels Y .
After cropping, we find the 8 closest matching x values in
the corresponding training set. Their respective associated
y values form the set Y . The aim of this image completion
task is to accurately recover Y given a single x.

For all MNISTOCC experiments, unless stated otherwise,
we use a simple bottleneck architecture (Figure 6). We train
our algorithm with N = 8 discrete values for c, and for all
competing methods we draw 8 samples. Networks which
use c as input have it concatenated with the activations as
a one-hot encoding, as described above. For each baseline,
we train with x against all values of Y . We compare against

x Y

N.N. searchOcclusion

Figure 3: Creating MNISTOCC. Each original MNIST digit (left)
is occluded to create an x image. The 8 matching digits which
most closely match x form the set Y .
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x (Network input)

Y (Ground truth)

(A) L2

(B) Dropout

(C) Bagged

(D) Lee et al.

(E) Lee et al. + εL2

(F) GAN sample

(G) Cond. GAN

(H) VAE

Ours

Figure 4: Predictions from the models. For each model, described in Section 4.1, we make 8 predictions on each image. The ground truth
row shows the Y values in MNISTOCC, found from the test set using nearest neighbor lookup — the left-most value in Y is the image from
which x was generated. More results are given in the supplementary material.
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Figure 5: Quantitative results on MNISTOCC. As more predictions
are made from the model, the oracle performance of all systems
except (A) L2 improves.

the following baselines:
(A) Standard L2 loss A bottleneck architecture, trained
with L2 reconstruction loss between the input and output.
(B) Test-time Dropout [9, 38] We train a single network
with Dropout applied to the dense layers. At test time, we
sample N predictions with different dropout values.
(C) Bagged ensemble We train an ensemble of N net-
works, each trained on a random 2/3 of the training set.

c

x

CNN

y x

DiverseNet

y

Figure 6: DiverseNet’s architecture differs from a standard CNN
through concatentations of c with the network activations. c is
typically a one-hot encoding of the integer parameter.

At test time, each network gives a single prediction.

(D) Lee et al. ensemble We form a ‘treenet’ ensemble
trained in unison as described in [22] (see Section 2); each
ensemble member shares weights in the encoder, but has
separate weights in the dense layers and decoder.

(E) Lee et al. ensemble + εL2 We found that several ensem-
ble members in (D) failed to learn, giving null predictions.
By adding a small (10−4) amount of L2 loss we reduced the
number of degenerate members and improved their scores.

(F) GAN samples For this simple baseline we sample
20, 000 images from a GAN [10] trained on MNIST. For
each test x, the k samples which most closely match the
unmasked corner are taken as the predictions.

(G) Conditional GAN [29] Here the generator network is
trained to produce samples conditioned on x. We use our
bottleneck architecture, with a noise vector concatenated
on the bottleneck and batch normalization [15] for stabil-
ity. Different noise samples give each test-time completion.

(H) Variational Autoencoder Here we make the archi-
tectural change of including a Gaussian sampling step in
the bottleneck, implemented and trained as [17]. Test-time
samples are produced by sampling from the Gaussian.

Quantitative results are shown in Figure 5. When making
just one or two predictions, our method has a higher MSE
than methods trained with an L2 loss. However, beyond 3
predictions, we outperform all competitors. Figure 4 shows
qualitative results. The bagged ensemble (C) performs well,
as expected, while (D) [22] produces poor results. Qualita-
tive inspection shows that, on this task, some of their en-
semble members never produce meaningful results. We see
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x Y −1 ←− ←− c −→−→ 1

Figure 7: Image completions using our algorithm with continuous
values of c. The first two columns show the input occluded x
values and the ground truth set of Y values. On the right we show
completions on this test image as c is swept from −1 to 1.
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Figure 8: The effect of varying β on the MNIST dataset. We in-
clude the results for L2 (in gray) for comparison with Figure 5. In
general, we can see that as β increases, the line tends towards the
L2 result; i.e. error is improved for fewer samples, at the expense
of reduced diversity.

how their method is hurt by dropping modes. Our Lcatchup
loss helps to prevent this mode dropping. We note that con-
ditional GANs produce highly correlated samples, as ob-
served in [16, 28], since the network learns to ignore the
noise input. The sharpness of (F) GAN sample suggests that
an adversarial loss could help improve the visual quality of
our results.
Continuous values for c Figure 7 shows image comple-
tions from a continuous value of c. Treating c as a continu-
ous variable has the effect of ordering the completions, and
allowing them to be smoothly interpolated. This can, how-
ever, lead to implausible completions between modes, e.g.
in the final row where the 4 merges into a 6.
The effect of adjusting β All results shown in this paper
use β = 1 (Section 3). Figure 8 shows the quantitative
effect of adjusting this parameter. As β increases, the curves
tend toward the L2 result; i.e. error is improved for fewer
samples, at the expense of reduced diversity. A user of our
system may wish to choose β to suit the task at hand.

4.2. Predicting traffic flows

City traffic can exhibit diverse behaviors. In this experi-
ment, we tackle the problem: given a single image of a new

road or intersection, can we predict what flow patterns the
traffic may exhibit? Consider the image of the traffic inter-
section in Figure 9. Based on our knowledge, we can pre-
dict how traffic might move, were it to be present. There are
many correct answers, depending on the phase of the traffic
lights, traffic density, and the whims of individual drivers.

We created a dataset to learn about traffic flows, formed
from short (∼8s) videos taken from a publicly accessible
traffic camera network [40]. Each of the 912 traffic cameras
in the network continuously films road traffic from a fixed
viewpoint, and short clips of traffic are uploaded to their
servers every five minutes. We obtained a total of 10,527
distinct videos, around 11.5 videos for each camera loca-
tion. For each video, we compute the average frame-to-
frame optical flow (using [41]) as a single y pattern. We
use a simple bottleneck architecture based on VGG16 [36]
— see supplemental materials for details. We divide the
camera locations into an 80/20 train/test split. To evalu-
ate, we use the average endpoint error, as advocated by [2].
On this task, we find that each of [23]’s ensemble members
produces a meaningful output, so we do not include εL2.
We report results compared to [23] and test-time dropout,
as those were the best competitors from Section 4.1. Quan-
titative comparisons are given in Table 1. We outperform
the baselines, and representative results are depicted in Fig-
ure 10. Note that while infinite combinations of vehicle-
motion are possible (within physical limits), our predictions
seek to capture the diverse modes, and to associate them

(a)
(b) (c)

(d) (d)

Figure 9: Traffic flow dataset. Given an image of road junction
(a), and some prior knowledge (e.g. that this image is from a coun-
try with left-hand-traffic), one can envisage different patterns of
traffic motion that might be expected. For example, (b) shows
two-way traffic; (c) shows two-way traffic plus a left filter, etc.

k = 1 2 3 4

Lee et al. 0.313 0.215 0.172 0.158
L2 + test-time Dropout 0.209 0.194 0.187 0.184
Ours 0.203 0.174 0.158 0.146

Table 1: Flow prediction evaluation. Lower numbers are better.
Here, we report the best endpoint error over all the predictions
made from each model, evaluated against each ground truth flow
image. We see that as more predictions are made, all methods
improve, while our full method outperforms the baselines.
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Our predictions Four samples of observed flow fieldsTest image

(a)

(b)

(c)

Figure 10: Predictions on traffic flow dataset. On the left is the input to our algorithm, a median image from a short traffic camera video.
Test cameras are excluded from training. In the center are four flow predictions from our model, made only from the single test-time frame,
while the right shows four of the many flow-fields actually observed by this traffic camera. In (a) our system predicts different volumes
of traffic flowing in each direction of this two-way road. (b) shows a junction. As well as traffic flowing in each direction, we see traffic
leaving (column 3) and joining (column 4) the main road. Here, column 2 predicts no traffic flowing, which is often the case in these short
video clips. In (c), we correctly identify the road as a one-way street (cols. 3 and 4) with a separate road crossing the main flow (col. 1).

with the appearance of regions in a single image. Our di-
verse predictions capture (a) different directions in the ma-
jor flow of traffic, (b) different densities of traffic flow, and
(c) traffic flow into and from side roads.

4.3. ShapeNet volumes from silhouettes

3D volume prediction from 2D silhouettes has recently
become a popular task [42, 33]. However, it is an inher-
ently ambiguous problem, as many different volumes could
produce any given silhouette image. This task calls for di-
verse predictions: we expect that a diverse prediction net-
work will be able to produce several different plausible 3D
shape predictions for a given silhouette input.

We used a subset of three classes from ShapeNet [44],
airplane, car and sofa, and we trained a system to
predict the 323 voxel grid given a single 2D silhouette ren-
dering as input. Training and testing silhouettes were ren-
dered with a fixed elevation angle (0◦) with azimuth varying
in 15◦ increments. We trained our model and baselines to
produce 6 outputs at test time. Details of architectures are
given in the supplemental material. Results are summarized
in Table 2 and a few samples illustrated in Figure 11. Our
results are typically better, and are achieved with far fewer
parameters.
Examining the effect of architecture and loss We per-
formed an ablation study to discover if the prevention of
mode-dropping from our method comes about due to our
architecture, or our Lcatchup loss. We directly compared
the ShapeNet results when training with our architecture vs
Treenet, and for each architecture we turned Lcatchup on
and off. We also tried pretraining the networks (with the
standard loss), to help each ensemble member to produce

plausible outputs. We find that, numerically, our proposed
method (indicated with⇒) outperforms all other variants.

Measuring plausibility of predictions In this task, one
method of assessing overall plausibility of the predictions
is to measure their compatibility with the input silhouettes.
The intuition is that good predictions will match with the
input silhouette, even if they don’t necessarily match the
ground truth. We convert each predicted grid to a mesh [25]
and render using the same camera parameters used to create
the original silhouette. This is compared to the input sil-
houette using the IoU, and the average over all of these IoU
measures is given in Table 2. The Treenet architecture tends
to give a lower re-projection IoU than equivalent predictions
from our architecture. This is because of mode dropping;
predictions from their network are not always plausible.

5. Conclusions

We have presented a novel way of training a single net-
work to map a single test-input to multiple predictions.
This approach has worked for predicting diverse appear-
ance, motion, and 3D shape. We are not the first to explicitly
propose diversity modeling, but a key advantage of our ap-
proach is its simplicity, which yields good scores with small
models. Through a minimal modification to the loss func-
tion and training procedure, applicable to all network archi-
tectures, we can readily upgrade existing models to produce
state-of-the-art diverse outputs without the need for expen-
sive sampling or ensemble approaches.

The impact of our innovation is greatest when ground-
truth labels are multi-modal, so where two big modes are
averaged by the model, or minority modes are overlooked.
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Architecture Params Test-time Lcatchup Pretrain k=1 k=2 k=3 k=4 k=5 k=6 Reproj Var

Treenet [23] 66.8M 0.047s

0.296 0.376 0.435 0.482 0.518 0.545 0.313 0.060
• 0.650 0.665 0.676 0.683 0.689 0.694 0.726 0.015

• 0.363 0.454 0.516 0.558 0.586 0.607 0.502 0.059
• • 0.666 0.679 0.688 0.694 0.700 0.704 0.733 0.013

DiverseNet 12.6M 0.053s

0.661 0.680 0.692 0.701 0.708 0.713 0.773 0.014
⇒ • 0.680 0.693 0.702 0.708 0.713 0.716 0.753 0.010

• 0.650 0.669 0.682 0.692 0.698 0.704 0.754 0.016
• • 0.671 0.678 0.683 0.687 0.690 0.693 0.757 0.003

Table 2: Quantitative results on Shapenet volume prediction, where all numbers are averaged across three classes. The numbers for
k = 1, . . . 6 are the IoU on the predicted voxel grids. ’Reproj’ is the IoU computed on the silhouette reprojection (see text for more
details). The row marked with ⇒ and highlighted red is our full method as described in this paper. All other rows are baselines and
ablations, and show that both our loss and our architecture combine to achieve improved results, and that we do not need pretraining.
Variance is listed for completeness, but it is a false measure of “diversity,” crediting even unrepresentative 3D shapes.

Ours

Treenet

Ours

Treenet

Ours

Treenet

Ground
Truth
sofa

Ground
Truth

airplane

Input 
silhouette

Ground
Truth

airplane

Input 
silhouette

Input 
silhouette

Figure 11: Predictions on Shapenet, comparing our algorithm with the Treenet architecture [22]. Many of the Treenet predictions are
blank, as the network has failed to make a prediction from this ensemble member, while our network balances plausibility and variety to
make a prediction for each value of c. Inset boxes for each prediction show that shape re-projected as a silhouette from the input camera’s
viewpoint. More results are given in the supplementary material.

We anticipate that our method will have applications in
user-in-the-loop scenarios, where predictions can be pre-
sented as multiple-choice options to a user [27].
Limitations Like unsupervised methods such as k-means
[39], our number of predictions must be user-specified at
training time. We leave determining an optimum value for

this parameter (similar to [32]) as future work.
Acknowledgements This work has been supported by the
SecondHands project, funded from the EU Horizon 2020
Research and Innovation programme under grant agreement
No 643950, NERC NE/P019013/1, Fight for Sight UK, and
EPSRC CAMERA (EP/M023281/1).

8



References
[1] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learn-

ing algorithm for Boltzmann machines. Cognitive Science,
9(1):147–169, 1985. 2

[2] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and
R. Szeliski. A database and evaluation methodology for op-
tical flow. IJCV, 2011. 6

[3] P. Baldi and P. Sadowski. Understanding Dropout. NIPS,
2013. 2

[4] D. Batra, P. Yadollahpour, A. Guzman-Rivera, and
G. Shakhnarovich. Diverse m-best solutions in markov ran-
dom fields. In ECCV, 2012. 2

[5] L. Breiman. Random Forests. Machine learning, 2001. 2
[6] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever,

and P. Abbeel. InfoGAN: Interpretable representation learn-
ing by information maximizing generative adversarial nets.
arXiv:1606.03657, 2016. 2

[7] D. Dey, V. Ramakrishna, M. Hebert, and J. Bagnell. Predict-
ing multiple structured visual interpretations. In ICCV, 2015.
2

[8] S. M. A. Eslami, N. Heess, C. K. I. Williams, and J. Winn.
The shape Boltzmann machine: A strong model of object
shape. IJCV, 107(2):155–176, 2014. 2

[9] Y. Gal and Z. Ghahramani. Dropout as a Bayesian approxi-
mation. arXiv:1506.02157, 2015. 1, 2, 5

[10] I. J. Goodfellow, J. Pouget-Abadie, B. X. Mehdi Mirza,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. arXiv:1406.2661, 2014. 2, 5

[11] A. Guzman-Rivera, D. Batra, and P. Kohli. Multiple choice
learning: Learning to produce multiple structured outputs.
NIPS, 2012. 2, 4

[12] G. E. Hinton. Training products of experts by minimizing
contrastive divergence. Neural Computation, 14(8):1771–
1800, 2002. 2

[13] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learn-
ing algorithm for deep belief nets. Neural Computation,
18(7):1527–1554, 2006. 2

[14] G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504–507, 2006. 2

[15] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
ICML, 2015. 5

[16] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-
to-image translation with conditional adversarial networks.
arXiv:1611.07004, 2016. 6

[17] D. P. Kingma and M. Welling. Auto-encoding variational
Bayes. In ICLR, 2014. 1, 2, 5

[18] A. Kirillov, B. Savchynskyy, D. Schlesinger, D. Vetrov, and
C. Rother. Inferring M-best diverse labelings in a single one.
In ICCV, 2015. 3

[19] J. Krause, B. Sapp, A. Howard, H. Zhou, A. Toshev,
T. Duerig, J. Philbin, and L. Fei-Fei. The unreasonable effec-
tiveness of noisy data for fine-grained recognition. In ECCV,
2016. 2

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012. 2

[21] Y. LeCun, C. Cortes, and C. J. Burges. The MNIST database
of handwritten digits, 1998. 4

[22] S. Lee, S. Purushwalkam, M. Cogswell, D. Crandall, and
D. Batra. Why M -heads are better than one: Training a di-
verse ensemble of deep networks. arXiv:1511.06314, 2015.
2, 3, 4, 5, 8

[23] S. Lee, S. Purushwalkam, M. Cogswell, V. Ranjan, D. Cran-
dall, and D. Batra. Stochastic multiple choice learning for
training diverse deep ensembles. In NIPS, 2016. 2, 3, 4, 6, 8

[24] Y. Liu and X. Yao. Simultaneous training of negatively cor-
related neural networks in an ensemble. IEEE Transactions
on Systems, Man, and Cybernetics, 1999. 2

[25] W. E. Lorensen and H. E. Cline. Marching cubes: A high res-
olution 3D surface construction algorithm. In SIGGRAPH,
1987. 7

[26] Q. Luan, F. Wen, D. Cohen-Or, L. Liang, Y.-Q. Xu, and H.-Y.
Shum. Natural image colorization. In Eurographics, 2007. 2

[27] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gib-
son, J. Hodgins, T. Kang, B. Mirtich, H. Pfister, W. Ruml,
K. Ryall, J. Seims, and S. Shieber. Design galleries: A gen-
eral approach to setting parameters for computer graphics
and animation. In Conference on Computer Graphics and
Interactive Techniques, 1997. 2, 8

[28] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale
video prediction beyond mean square error. In ICLR, 2016.
6

[29] M. Mirza and S. Osindero. Conditional generative adversar-
ial nets. arXiv:1411.1784, 2014. 2, 5

[30] I. Misra, C. L. Zitnick, M. Mitchell, and R. Girshick. See-
ing through the human reporting bias: Visual classifiers from
noisy human-centric labels. In CVPR, 2016. 2
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