
Learning Structured Gaussians to Approximate Deep Ensembles

Ivor J.A. Simpson
University of Sussex, UK
i.simpson@sussex.ac.uk

Sara Vicente
Niantic, UK

svicente@nianticlabs.com

Neill D.F. Campbell
University of Bath, UK
n.campbell@bath.ac.uk

Abstract

This paper proposes using a sparse-structured multivari-
ate Gaussian to provide a closed-form approximator for the
output of probabilistic ensemble models used for dense im-
age prediction tasks. This is achieved through a convolu-
tional neural network that predicts the mean and covari-
ance of the distribution, where the inverse covariance is
parameterised by a sparsely structured Cholesky matrix.
Similarly to distillation approaches, our single network is
trained to maximise the probability of samples from pre-
trained probabilistic models, in this work we use a fixed en-
semble of networks. Once trained, our compact represen-
tation can be used to efficiently draw spatially correlated
samples from the approximated output distribution. Impor-
tantly, this approach captures the uncertainty and struc-
tured correlations in the predictions explicitly in a formal
distribution, rather than implicitly through sampling alone.
This allows direct introspection of the model, enabling vi-
sualisation of the learned structure. Moreover, this formu-
lation provides two further benefits: estimation of a sample
probability, and the introduction of arbitrary spatial condi-
tioning at test time. We demonstrate the merits of our ap-
proach on monocular depth estimation and show that the
advantages of our approach are obtained with comparable
quantitative performance.

1. Introduction
Single prediction neural networks are ubiquitous in com-

puter vision and have demonstrated extensive capability for
a variety of tasks. However, researchers are increasingly
interested in capturing the uncertainty in estimation tasks
to combat over-confidence and ambiguity; such concerns
are important when building robust systems that connect
computer vision approaches to down-stream applications.
The deployment of neural networks for safety-critical tasks,
such as autonomous driving, requires an accurate measure
of uncertainty. While Bayesian Neural Networks [17] are
often a model of choice for uncertainty estimation, ensem-
bles [14] have been proposed as a simple alternative. Em-

Unlimited structured
samples

Ensemble

Input image ...

Ours

Model
introspection

Conditioning

SUPN

CNN

CNN

CNN

Mean

Sample 1

Sample 2

Sample N

Input image
Covariance

Figure 1. Our method is trained to approximate the output of
an ensemble, by using structured uncertainty prediction networks
(SUPN) to predict a mean and covariance for a multivariate Gaus-
sian distribution. This explicit distribution enables a variety of
tasks including: sampling, conditioning and model introspection.

pirically, ensembles have been shown to produce good mea-
sures of uncertainty for vision tasks [15,19] and allow prac-
titioners to exploit associated application-specific inductive
biases, for example established architectures, directly.

Limitations of implicit approaches Despite their pop-
ularity, ensembles have a number of drawbacks that we
group into three themes. Firstly, they come at an increased
cost compared with deterministic networks. At training
time, they require training multiple deep models, while
at test time, multiple inference passes are required. MC-
dropout [5] saves computation at training time, but it still
requires multiple passes at inference time. Secondly, these
approaches only provide an implicit distribution over prob-
able model outputs. Any uncertainty captured is only acces-
sible through ancestral sampling. Accordingly, one cannot

calculate conditional samples, or assess the likelihood of a
new sample given the learned model. Finally, and of in-
creasing importance to the community, introspection of the
trained models is very dif�cult.

When combining computer vision with larger systems,
there is virtue to summarising the posterior distribution in
a formal and compact form that can be visualised and ap-
propriately used to inform downstream tasks. The computa-
tional challenges have prompted work on producing a single
model to approximate the output of an ensemble; so called
“ensemble distillation” [2,15,18,21].

Lack of structure in distillation methods Previous meth-
ods focus on: classi�cation problems [15, 18], approximat-
ing only the mean of the ensemble [2], or modelling inde-
pendent per-pixel variance [21]. In contrast, while we also
adopt a single model to reduce the computational cost, we
propose to learn a model that approximates the ensemble
by formally capturing structure in the output space; this is
more appropriate for dense prediction tasks. When mak-
ing per-pixel predictions, it is common to use models that
capture spatial correlation in the output space. In particular,
models such as Markov or Conditional Random Fields [20],
which capture correlations between neighbouring pixels,
have been extensively used in computer vision. However,
capturing the structure of the output space is less explored
in the context of modelling uncertainty. Previous work has
focused on per-pixel heteroscedastic uncertainty, by using a
Gaussian [11,21] or Laplace [13] likelihood model with di-
agonal covariance. Since these models do not capture corre-
lations between pixels, samples suffer from salt-and-pepper
(independent) noise.

Capturing structure explicitly Previously, adopting per-
pixel uncertainty representations usually follows from the
expectation that direct estimation of a full covariance struc-
ture is intractable in both storageO(pixels2) and com-
putationO(pixels3). Recently, however, Dortaet al. [4]
introduced Structured Uncertainty Pprediction Networks
(SUPN) for generative models. The paper extended a Vari-
ational Auto Encoder (VAE) [12] with a likelihood model
that is Gaussian with a full covariance matrix. The authors
show how this can be predicted ef�ciently by using a sparse
approximation of the Cholesky decomposition of thepreci-
sionmatrix. Working in the domain of the precision allows
a dense covariance structure to be obtained whilst also re-
specting our prior that long range structure is derived from
the propagation of local image statistics. By encoding a full
covariance matrix, the samples obtained from such a model
capture these long range correlations in the image domain
and are free from salt-and-pepper (independent) noise.

Contributions In this work, we build on SUPN [4] and
show that a deep network can be trained in a regression
setting to predict a structured Gaussian distribution that

approximates the output distribution of methods that cap-
ture model uncertainty, such as ensembles [14] and MC-
dropout [5]. We introduce a novel ef�cient approach
to drawing conditioned or unconditioned samples from a
structured multivariate Gaussian distribution with a sparsely
structured precision matrix. By taking full advantage of the
closed form nature of the Gaussian distribution, our method
allows introspection and enables conditioning at test time,
which proves cumbersome for other methods. Importantly,
our approach is not limited to Gaussian likelihoods over the
prediction space (see § 3.4).

Evaluation We demonstrate the ef�cacy of our method for
the task of depth estimation. Experiments show that the
new advantages can be obtained without sacri�cing quanti-
tative performance, with results comparable to the original
ensemble; we consider metrics over both accuracy and the
capture of uncertainty. The samples are found to follow the
ensembles without being limited in the number that can be
drawn. The compact representation is capable of encod-
ing a rich distribution with only a modest increase in com-
putation over a single deterministic network. Furthermore,
we demonstrate using our explicit representation to perform
conditional sampling and illustrate the ability to inspect the
model and visualise the correlation structure learned.

2. Background

Our goal is to modelp(d j x), wherex is the observed
image andd is a per-pixel prediction,e.g. a semantic la-
belling or depth map. While most deterministic deep mod-
els can be seen as capturing the mean� (x) of this distribu-
tion, we are interested in models that also capture the vari-
ance� (x).

2.1. Uncertainty in Deep Models

Previous work for probabilistic modelling using neural
networks, can be broadly grouped into three categories:
(1) Bayesian approaches that model uncertainty of the net-
work parameters, (2) methods that empirically approximate
Bayesian approaches by predicting multiple hypothesis, and
(3) approaches that modelp(d j x) directly by predicting a
parametric distribution. The literature on uncertainty mod-
elling in neural networks is vast and we direct the interested
reader to a recent review [1].

Modelling uncertainty in the parameters Bayesian neu-
ral networks [17] model uncertainty by modelling the prob-
ability distribution of the learned weightsw of the net-
work. The resulting posteriorp(d j x) is then obtained by
marginalising over the weights:

p(d j x ; D) =
Z

p(d j x ; w) p(w j D) dw ; (1)

wherew are the model parameters, and we make explicit
the dependence on the datasetD.

While this approach is able to model arbitrary distribu-
tionsp(djx), and generate samples which are correlated in
output space, it also suffers some limitations. The majority
of approaches rely on mean-�eld approximations over the
weights to maintain tractability. In addition, it is dif�cult to
condition on any of the output values due to the absence of
a parametric distribution over the posterior.

MC-dropout [5] approximates Bayesian networks by us-
ing dropout at both training and test time. Dropout was �rst
proposed to reduce over-�tting in deep neural networks [22]
and it proceeds by randomly setting some of the weights of
the network to zero. It has been shown, [5], that this ran-
dom dropping of weights at test time is akin to sampling
from the distributionp(w j D) and may be used to approxi-
mate the integral in (1).

Multiple hypothesis Ensemble methods make use of mul-
tiple models and combine them to get a single prediction.
Deep ensembles can be trained using bootstraping [14],i.e.
splitting the training set into multiple random subsets and
training each model in the ensemble independently. Al-
ternatively, to save computation, a deep ensemble can be
trained by taking multiple snapshots [9] from the same
training procedure, requiring a cyclic learning rate. Ensem-
bles have been shown to provide good measures of uncer-
tainty [14]. They can be seen as approximating Bayesian
networks by replacing the integral in (1) by a sum over a
discrete number of models. As discussed in § 1, training
and inference procedures can become expensive in terms
of maintaining an increasing number of networks; practi-
cal approaches are often limited in the number of distinct
models that, in turn, restricts the number test-time samples.

Predictive uncertainty via parametric distributions The
other alternative to modelling uncertainty is to use a feed-
forward neural network to predict the parameters of a para-
metric distribution [11]. For regression tasks,p(djx) is typ-
ically described by a Gaussian likelihood, where the mean
and variance are outputs of the neural network:

p(d j x) � N
�
d j � (x); � (x)

�
; (2)

where� (x) is usually approximated by a diagonal matrix
where the diagonal elements are predicted by the network.
Kendall and Gal [11] discuss how the predicted variance can
be seen as a loss attenuation factor, reducing the loss for
outliers; this predicted per-pixel variance is shown to cor-
relate with error in the predictions. Evaluating predictive
uncertainty is more ef�cient since a single pass of the net-
work at test time is suf�cient to fully determine the measure
of uncertainty. However, independent per-pixel uncertainty
estimates fail to capture spatial correlation that is known to
exist in images; samples from these models are destined to
be unrealistic and suffer from salt-and-pepper noise.

Ensemble distillation Recently, there has been a grow-
ing interest in approximating the probabilistic output of an

ensemble by a single model [2, 15, 18, 21]. This process
is commonly named “distillation”. Most of the focus has
been on classi�cation [15, 18], where the goal is to predict
the class of the image. While these methods show impres-
sive results in detecting out-of-distribution images, they are
not easily extended for dense prediction tasks. Other meth-
ods focus on approximating only the mean of the ensemble
distribution [2], or modelling independent per-pixel vari-
ance [21]. In contrast, our model also does ensemble dis-
tillation, but can capture structure in the output space.

Uncertainty in depth prediction models The goal of self-
supervised depth estimation is to train a network to pre-
dict single image depth maps without explicit depth super-
vision [7, 8]. Instead, self-supervised approaches use geo-
metric constraints between two calibrated stereo cameras to
learn depth prediction. At test time, these methods do not
require a stereo pair, only a single image. Given the inherit
ambiguity of predicting depth from a single image, depth
prediction is a natural use case for uncertainty estimation
in dense prediction tasks. In [19] the authors review and
compare different approaches for uncertainty prediction for
self-supervised depth prediction. They focus on methods
that predict multiple hypothesis, such as dropout [5] and
ensembles [14], methods that predict per-pixel independent
heteroscedastic uncertainty [13], and combinations of both.

In the experiments, we use the pre-trained networks pro-
vided by [19] to evaluate the ef�ciency of our method in
approximating ensembles. In particular, we use their most
successful model, which combines an ensemble with pre-
dictive uncertainty. Their ensembles are trained using boot-
strapping [14], and they use an uncorrelated Laplace distri-
bution for predictive parametric uncertainty.

Xia et al. [25] show how a probabilistic model for depth
prediction can be explored by downstream tasks such as
inference with additional information. They model uncer-
tainty at a patch level in a model akin to a Markov Random
Field. In contrast to our approach, the method requires solv-
ing a complex optimization problem at inference time.

2.2. Predicting Structured Gaussian Distributions

To approximate an ensemble, we train a network to pre-
dict the parameters of a Gaussian distribution. Given an in-
put imagex the network outputs the parameters of a Gaus-
sian distribution� (x) and� (x). We focus on dense pre-
diction tasks. For these tasks, ifN is the number of pix-
els in the input image, the size of� is alsoN while a full
� matrix hasN 2 parameters. The quadratic scaling of the
number of parameters of the covariance matrix leads to the
common remedy of a diagonal matrix, which requires only
N parameters. However, this simplifying assumption pro-
hibits the capture of correlations between pixels.

Structured Uncertainty Prediction Networks Our ap-
proach builds on the work, [4, 24], where the parameter-

isation used is the Cholesky decomposition of the preci-
sion matrix, i.e. the network predictsL � directly, where
L � L >

� = � � 1 andL � is a lower triangular matrix. For
completeness, we review some of the properties of the pa-
rameterisation presented in [4], which we use in our work.

When choosing a parameterisation, there are a few crite-
ria that should be taken into account: how easy it is to evalu-
ate the likelihood function required for training, how easy it
is to sample from the distribution at inference time and how
easy is to impose that the covariance matrix (or equivalently
precision matrix) is symmetric and positive de�nite? Direct
prediction of the Cholesky factor guarantees that the preci-
sion matrix is symmetric. To guarantee that it is positive
de�nite, the diagonal values of the Cholesky decomposition
are required to be positive; an easy constraint to enforce in
practice. This choice of parameterisation allows for easy
computation of the log-likelihood of the multivariate Gaus-
sian distribution. However, sampling is more dif�cult to
perform, since access to the covariance is required. We dis-
cuss a new ef�cient method for sampling in § 3.3.

Sparsity Despite the advantages of using this parameter-
isation and the fact that the Cholesky is a lower triangu-
lar matrix, the number of elements still grows quadratically
with respect to the number of pixels,N , making it pro-
hibitive to directly estimate for large images. We follow
SUPN [4] in imposing sparsity in the Cholesky matrixL � .
For each pixel, we only populate the Cholesky matrix for
pixels which are in a small neighborhood, while keeping
the matrix lower-triangular. We include an illustration in the
supplemental material. This sparse Cholesky matrix can be
compactly represented by only predicting the non-zero val-
ues; for a3� 3 neighborhood, this corresponds to predicting
the diagonal map plus 4 off-diagonal maps. Importantly,
this representation can be encoded ef�ciently into popular
APIs such as Tensor�ow and PyTorch using standard con-
volutional operations.

Deep Gaussian MRFsOur model can be seen as a Gaus-
sian Markov Random Field, since the sparsity pattern on
the precision matrix directly implies the Markov property:
a variable is conditional independent of all other variables
given its neighbours. Similar to our approach, [3,10,23] use
a regression model to predict the parameters of a Gaussian
Conditional Random Field that captures structure in output
space. They show improved results for semantic segmenta-
tion. However, they focus on predicting the MAP solution
and do not make use of the full probability distribution.

3. Method

Our goal is to train a single network that approximates
the multiple outputs of an ensemble. We assume this en-
semble is given as a pre-trained network(s),e.g. from [14]
or [9]. We predict a structured multivariate Gaussian using

the sparse representation discussed in § 2.2.

3.1. Training

GivenI training imagesf x i j i 2 [1; I]g, the pre-trained
ensemble is run for the full training set, to obtainS distinct
predictions per imagef ds

i j s 2 [1; S]g, whereS is the size
of the ensemble or number of MC-dropout samples.

Log-likelihood loss Our network is trained to minimise the
negative log-likelihood of the training set:

L = �
IX

i =1

SX

s=1

logN
�
ds

i j � (x i); � (x i)
�

; (3)

where N
�
ds

i j � (x i); � (x i)
�

is the probability density
function of a multivariate Gaussian distribution.

3.2. Inference

In common with ensembles and MC-dropout, we can use
our model to obtain samples from the predictive distribu-
tion p(d j x). In contrast with ensembles, our model is not
restricted on the number of samples that can be taken; we
discuss an ef�cient sampling procedure in § 3.3. More im-
portantly, since our model predicts a closed form probabil-
ity function, it allows for additional inference tasks which
are not possible with ensembles or MC-dropout.

Evaluation of the predictive log-likelihood Our model
allows evaluating the log-likelihood for a given dense pre-
diction. This is useful for model comparison.

Conditional distribution The output Gaussian distribution
can be used to compute the conditional distribution of some
pixel labels, given the label for other pixels. The ability of
drawing conditional samples has practical applications, for
example: for depth completion, where the depth of a small
number of pixels is provided by an external sensor, such as
a LIDAR scanner; or for interactive image segmentation,
where the label of a few pixels is provided by a user.

3.3. Ef�cient Sampling

Sampling from a Multivariate Gaussian distribution with
a diagonal covariance matrix� = diag(� 1; : : : ; � N) can
proceed with a straight forward sampling approach where
each dimension (pixel) is independent:

~d(s)
n = � n + � n ~" (s)

n ; ~" (s)
n � N (0; 1) : (4)

If the Gaussian distribution has a general covariance,
however, then the sample cannot be computed indepen-
dently for each pixel and must be drawn through a square
root matrix of the covariance, such as the Cholesky factor:

~d (s) = � + L � ~" (s) ; ~" (s) � N (0; I N) ; (5)

where L � L >
� = � . Computation of the dense covari-

ance matrix from the sparse precision, followed by the

Cholesky operation would involve a computational com-
plexity of O(N 3) andO(N 2) storage making it infeasible.

Ef�cient calculation via the Jacobi method Fortunately,
adopting a sparse structure over the Cholesky precision ma-
trix L � means that we can perform a matrix multiplication
ef�ciently. We can exploit this to take approximate samples
using a truncated (toJ iterations) version of the Jacobi itera-
tive solver to invertL � . This results in a tractable algorithm
for obtaining approximate samples of suf�cient quality. We
can take multiple samples from the same distribution simul-
taneously while retaining ef�ciency.

We start with a set ofS standard Gaussian samples,

~E = [~" (1) ; : : : ; ~" (S)]; ~" (s) � N (0; I N) : (6)

We then note that the transposed, inverse of the precision
Cholesky matrix can be used as a sampling matrix since

� = � � 1 = (L � L >
�) � 1 = L �>

� L � 1
� ; (7)

indicating thatL �>
� is the LHS of a square root matrix for

� . Thus we draw low variance Monte Carlo samples as

~D = [~d (1) ; : : : ; ~d (S)] = � + L �>
�

~E : (8)

To invert L >
� ef�ciently, we useJ Jacobi iterations; these

are particularly ef�cient to apply with a sparse matrix that
is already lower triangular. We initialiseS(0) = ~E and then,
at each iteration, update the samples with

S(j +1) D � 1
�

� ~E � U� S(j) � ; (9)

whereD � := diag(L >
�) andU� := L >

� � D � , a strictly
upper triangular matrix. The �nal samples are then obtained
by the addition of the mean such that~D = � + S.

Ef�cient conditional sampling As we have a closed form
representation of the output distribution:

d � N (� ; �); � = L �>
� L � 1

� ; (10)

we can �nd the expression for a resulting conditional dis-
tribution where we specify values for a subset of the pixels
and sample from the resulting distribution over the remain-
ing pixels. Let us partition the pixels into a set of known
valuesdK and unknown valuesdU ; pixels (arbitrarily) be-
long to either one set or the other under a pixel-wise mask:

[m K]n =
�

1; n 2 K
0; n 2 U

; m U = 1 � m K : (11)

Thus, with slight abuse of notation, we recover the full set
of values asd = m K � dK + m U � dU . The conditional
distribution for the unknown values, given that the known
valuesdK = � , is the Gaussian conditional density:

p(dU j dK = �) � N (b; B) ; (12)

b := � U + � UK � KK (� � � K) ; (13)

B := � UU � � UK � � 1
KK � KU ; (14)

Algorithm 1: Jacobi sampling for the multivariate
Gaussian distribution

Result: Samples drawn from a correlated
multivariate Gaussian (with sparse
precision)

Samples:S(0) ~E � N (0; I N), N := W � H ;
Local connection �lters:F = f f l gL

l =1 ;
Log diagonal terms:� 2 RN ;
Off diagonal terms: 2 RL � N ;

for j 0 to J � 1 do
V Conv2D(S(j) ; F);
v

P L
l =1 [V �]n;l ;

S(j +1)
�

exp(�)
� � 1

� (~E � v)
end

Output:S(J) �
�
L �>

�
~E

�
� N (0; � � 1);

where the subscripts dictate the appropriate partitions of the
mean vector or blocks of the covariance matrix.

Evaluating this directly, in matrix form, would again be
prohibitively expensive, especially considering the matrix
inversions (from precision to covariance matrices). Thank-
fully we can use a modi�ed form of the Jacobi sampling
method combined with Matheron's rule for conditional
sampling. Matheron's rule states that if(a; b) are samples
from the joint distributionp(dK ; dU) then the random vari-
ableb conditioned ona = � can be found by:

(b j a = �) b + � UK � � 1
KK (� � a) : (15)

We can use straight forward identities to convert Matheron's
rule into an update equation in terms of the precision:

�
� KK � KU

� UK � UU

�
�
�
� KK � KU

� UK � UU

�
=

�
I 0
0 I

�
; (16)

) � UK � KK + � UU � UK = 0 (17)

) � UK � � 1
KK = � � � 1

UU � UK : (18)

We have ready access to ef�cient evaluation of the sparse
L >

� , as discussed in the Jacobi method. With suitable book-
keeping, we can produce the appropriately shuf�ed local
connection �ltersF shu� Shuf�e(F) and permuted off-
diagonal terms shu� Shuf�e() to provide a similar
evaluation of the sparseL � . This product results in a sparse
banded diagonal structure in the precision matrix� . The
appropriate blocks of this sparse matrix can be accessed and
used to solve for the conditional update of (15) using a pre-
cision form of the update (18).

3.4. Extension to Non­Gaussian Likelihoods

For many dense prediction tasks, a multivariate Gaus-
sian distribution is not an appropriate likelihood over the

observations directly. However, SUPN is still applicable for
this use case, by �tting the multivariate Gaussian distribu-
tion to the logit space,i.e. to the layer just before the last
non-linear layer. This is then followed by an appropriate
activation function. For example, for depth prediction, the
outputs of the network should be non-negative and the ac-
tivation function used is a scaled sigmoid, following mon-
odepth2 [8]. Similarly, for the task of segmentation, the �t-
ting of the SUPN could be done in logit space and soft-max
would be used as the activation function.

3.5. Implementation Details

Architecture We build upon the U-Net architecture used
by Monodepth2 [8],i.e. an encoder-decoder architecture
where the encoder is a ResNet18 and there are skip con-
nections between the encoder and the decoder. We add an
additional decoder to predict the Cholesky parameters. This
decoder takes skip connections from the mean decoder as
input. The additional decoder concatenates coordinate maps
in the convolutional blocks [16] to provide additional spatial
information. We designed an off-diagonal prediction ap-
proach where the scale of the values is initially very small,
� exp(� 4), but adapts during training. We found this in-
ductive bias, in lieu of formal priors, was required to predict
high quality covariances. We use a5 � 5 neighborhood for
the Cholesky decomposition; please see the supplementary
details for architecture details and ablation experiments.

Model size Our model encodes the distillation of an en-
semble of large models into a single framework; we use
only 24% more parameters than a single network (out of 8
in the ensemble).

Multi-scale loss For depth prediction, we use a multi-scale
loss similar to Monodepth2 [8], where the loss in (5) is ap-
plied across different scales.

Complexity Fixed sparsity ensures that all operations are
O(N) for both computation and storage. Sampling isO(J)
(we usedJ = 1000); empirically, the total time for a full
Jacobi sample was 0.6s.

4. Experiments

For the experiments, we show our method applied to
monocular depth estimation. We use the KITTI dataset [6]
and base our implementation on the Monodepth2 reposi-
tory [8] and the repository from [19].

Pre-trained ensemblesWe use the pre-trained models pro-
vided by [19]. In particular, the ensembles created through
bootstrapping together with predictive uncertainty. Two dif-
ferent approaches are used for predictive uncertainty. Both
use a diagonal multivariate Laplace distribution, but differ
in the way they are trained: LOG is trained by directly opti-
mizing the log-likelihood of a self-supervised depth model;

while SELF uses a pretrained network for depth prediction,
without uncertainty estimation, as the teacher model.

Metrics For evaluating the accuracy of the estimated depth
maps we use a subset of the metrics commonly used for
the Kitti dataset: absolute relative error, root mean squared
error (RMSE) and the A1 metric.

For evaluation of the uncertainty estimates, we use the
metrics used in [19]: area under the sparsi�cation error
(AUSE) and area under the random gain (AURG). Both
these metrics rely on using per-pixel uncertainty estimates
to rank pixels from less con�dent to more con�dent. For
AUSE, this ranking is compared with an oracle ranking that
sorts pixels from higher error to lower error, using the dif-
ferent ground truth metrics for ranking. A small AUSE
means that the ranking provided by the uncertainty estimate
is similar to this oracle ranking. AURG compares the rank-
ing based on estimated uncertainty with a random ranking,
large values are preferred for this metric.

Since both these established metrics only consider
per-pixel estimates, we also evaluate the posterior log-
likelihood of test samples from the ensembles under our
model. To provide a baseline, we also train a version of
our model with only a diagonal covariance structure (per-
pixel), which cannot model structure. Comparing against
this baseline allows us to determine if the model has cor-
rectly captured the distribution of test samples and avoided
over�tting. We also measure the log-likelihood to other en-
sembles to ensure that the SUPN variants estimate distribu-
tions that generalise well to support other plausible samples.

4.1. Quantitative Results

Depth accuracy In Table 1 we show a quantitative com-
parison between the two variants of ensembles and the cor-
responding versions of our model, trained to approximate
them. We compare the methods using the depth estimation
metrics. While the mean performance of the ensembles is
slightly superior to our approximate models, the results are
comparable within the margin of error. The box plot in Ta-
ble 1 highlights the strong overlap in the error distribution of
the ensemble and SUPN models, indicating that despite the
signi�cant reduction in the number of parameters, SUPN is
able to approximate the performance of the ensemble.

Our models compare favourably with a diagonal only
model. This is particularly noticeable in the metrics for the
best sample. Samples from our model consistently outper-
form samples from a diagonal only Gaussian.

Uncertainty estimation Table 2 provides a quantitative
comparison in terms of uncertainty metrics. SUPN con-
sistently outperforms the teacher ensemble model for both
LOG and SELF. The log-likehood values demonstrate that
the correlated structure capture by SUPN is better able to
explain the test outputs of the ensembles that the baseline

	. Introduction
	. Background
	. Uncertainty in Deep Models
	. Predicting Structured Gaussian Distributions

	. Method
	. Training
	. Inference
	. Efficient Sampling
	. Extension to Non-Gaussian Likelihoods
	. Implementation Details

	. Experiments
	. Quantitative Results
	. Qualitative Results

	. Discussion and Limitations

