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Abstract
We present a non-parametric Bayesian latent vari-
able model capable of learning dependency struc-
tures across dimensions in a multivariate setting.
Our approach is based on flexible Gaussian pro-
cess priors for the generative mappings and in-
terchangeable Dirichlet process priors to learn
the structure. The introduction of the Dirichlet
process as a specific structural prior allows our
model to circumvent issues associated with pre-
vious Gaussian process latent variable models.
Inference is performed by deriving an efficient
variational bound on the marginal log-likelihood
of the model. We demonstrate the efficacy of our
approach via analysis of discovered structure and
superior quantitative performance on missing data
imputation.

1 Introduction
Latent variable models provide data-efficient and inter-
pretable descriptions of data. By specifying a generative
model, it is possible to achieve a compact representation
through exploiting dependency structures in the observed
data. Their probabilistic structure allows the model to be
integrated as a component in a larger system and facilitates
tasks such as data-imputation and synthesis.

Efficient representations can be achieved when the intrinsic
dimensionality of the data is much lower than in its observed
representation. Traditional approaches, such as probabilistic
PCA (Tipping & Bishop, 1999) and the GP-LVM (Lawrence,
2005), assume that the data lie on a single low-dimensional
manifold embedded in the high-dimensional space. How-
ever, in many scenarios, this assumption is too simplistic
as more intricate dependency structures are present in the
data. In specific, there are many situations where groups of
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dimensions co-vary. For a human walking, each limb shares
a variation from the direction of travel. One would expect
that both arms share information not always present in the
lower limbs; however, it is conceivable that the left-side
limbs share information not present on the right.

Variations that are not common to all dimensions are chal-
lenging to model. If included in the representation, a vari-
ation only present in a subset of dimensions will pollute
the representation of the dimensions that do not share this
characteristic.

One approach to circumvent this issue is to learn a factor-
ized latent representation where independent latent variables
describe each group of variations. An example of such ap-
proach is the Inter-Battery Factor Analysis (IBFA) (Tucker,
1958) model, where the latent space consists of dimensions
encoding structure shared across all dimensions separately
from structure that is private within a group of variates. This
model, and the approaches building on this idea, assume
that the grouping of the observed dimensions is known a
priori. Importantly, this means that the learning task is to
recover a latent representation that reflects a given grouping
of the dimensions in the observed space.

Even for familiar data, such as human motion, specifying
these groupings is challenging, while, in other tasks, extract-
ing the groupings themselves is essential. We refer to these
disjoint groupings as views. One such example is a medical
scenario where each observed variate corresponds to a spe-
cific, potentially costly and for the patient intrusive, medical
test. If we can learn the groupings of variations we can
potentially reduce the range of tests needed for diagnosis.

In this paper, we describe a latent variable model, which
we term the DP-GP-LVM, that automatically learns the
grouping of the observed data thereby removing the need
for a priori specification. By formulating the generative
model non-parametrically, our approach has unbounded
representative power and can infer its complexity from data.
The Bayesian formulation enables us to average over all
possible groupings of the observations allowing the structure
to emerge naturally from the data. We perform approximate
Bayesian inference by optimizing a lower bound on the
marginal likelihood of the model.
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2 Background
Finding latent representations of data is a task central to
many machine learning applications. By exploiting depen-
dencies in the data, more efficient low dimensional repre-
sentations can be recovered. Of specific importance is the
work of Spearman (1904) where the interpretation of a latent
dimension as a factor was introduced. The traditional factor
analysis model is unidentifiable meaning additional assump-
tions need to be incorporated, for example, the Gaussian
assumption which leads to PCA (Hotelling, 1933).

A second approach is to introduce groupings of the observed
data, as is done in CCA (Hotelling, 1936), where the latent
representation that best describes the correlation between the
groups is sought. While PCA was described as a model, it
is challenging to describe the generative procedure of CCA.
IBFA (Tucker, 1958; Kristof, 1967) is a less known model
that exploits groupings of the observed data by introducing
two different classes of latent factors: shared and private,
where the former represent variations common to all groups
while the latter variations only belong to a single group.
As discussed in § 1, this factorization is important when
specifying a generative model.

A Bayesian formulation of IBFA was proposed by Klami
et al. (2013) and a non-linear extension, based on Gaus-
sian processes, called Manifold Relevance Determination
(MRD) by Damianou et al. (2012). However, there exists
an important distinction between the two models that is
rarely highlighted. The linear formulation of IBFA allows
the groupings of the data to be inferred while, in the MRD
model, the views needs to be set a priori.

In this paper, we present a model that combines the bene-
fits of both: a non-linear, Bayesian model that allows the
groupings to emerge from data. Our proposed model has
commonalities with MRD and, being motivated by its short-
comings, we now proceed to describe it in detail.

Latent Variable Models The task in unsupervised learn-
ing is to learn a latent representation X ∈ RN×Q from a set
of multivariate observations Y ∈ RN×D. We have N as
the number of observations while Q and D are the dimen-
sionality of the latent and observed data, respectively, and
Q� D. We denote a single observation yn, n ∈ [1, N ], as
a D-dimensional vector yn ∈ RD. The generative model
specifies the relationship between the latent space and the
observed, yn = f(xn) + εn, where the form of the noise
εn leads to the likelihood of the data.

MRD is a member of a larger class of models called Gaus-
sian Process Latent Variable Models (GP-LVM) (Lawrence,
2005), where a Gaussian process prior (Rasmussen &
Williams, 2005) is placed over the generative mapping f(·).
Under the assumption of Gaussian noise, it is possible to
marginalize over the whole space of functions leading to

a rich and expressive model. Due to the non-linearities of
f(·), integration of the latent variables cannot be achieved in
closed form. Inference of X can either be achieved through
maximum-likelihood or via approximate integration by op-
timizing a variational lower bound on the marginal likeli-
hood (Damianou et al., 2016b).

Multiple Views We use the term views to refer to natu-
ral groupings within a set of data; data within a specific
view will share a generative structure; in concrete, a set of
observed dimensions. Thus, views are observed data that
are aligned in terms of samples but of a different modality
or a disjoint group of observed dimensions. For example,
consider a data set consisting of silhouettes of people, the
angles of the joints between their limbs and the background
appearance of a room. These would consist of three views
(silhouettes, angles and appearance), where the silhouettes
and angles have shared (the pose of the body) and private
(clothes affect the silhouette but not the joints) information.
The appearance of the background is a third view that should
be independent of the first two since it has no causal link.
The concept of views was first introduced in the GP-LVM
framework by Shon et al. (2006) where the observed data
was grouped into two sets of views sharing a single set of
latent variables. Ek et al. (2008) and Salzmann et al. (2010)
extended this, introducing the idea of a factorization with
shared and private latent spaces from IBFA.

Model Evolution We now describe the sequence of graph-
ical models in Fig. 1 from the model of Ek et al. (2008) in
(a) to our proposed model in (h). The model by Ek et al.
(2008) extends naturally beyond two separate groupings.
However, due to the fixed structure of the latent space, it
leads to a combinatorial explosion in the number of latent
variables as illustrated by Fig. 1(e). Further, learning is
challenging as the dimensionality of each latent space needs
to be known a priori. To circumvent these issues, the MRD
model, Fig. 1(b), treats the factorization as part of the GP
prior. This GP prior is completely specified by its mean
and covariance functions. For most unsupervised tasks a
zero mean function is assumed, leaving only the covariance
function as its parameterization.

The introduction of Automatic Relevance Determination
(ARD) (Neal, 1996) covariance functions allows the MRD
to enclose the factorization into the GP prior. In a sta-
tionary kernel, the covariance between two latent variables
is a function of the distance between the points. Rather
than a spherical distance function, the ARD version intro-
duces a parametrized diagonal Mahalanobis distance that
is learned independently for each view, represented by θ in
Fig. 1 (f)-(h). The interpretation is that if the distance func-
tion switches off an axis, this view becomes independent of
the corresponding latent dimension; thus, the factorization
can be determined by the non-zero ARD weights. However,
this approach leads to additional problems as the ARD pa-
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Figure 1. Graphical models for the factorized GP-LVM, MRD, and DP-GP-LVM. The term views, denoted with Y(i), refers to a known
group of output dimensions. (a) The factorized GP-LVM allows for shared (X(1,2)) and private (X(1),X(2)) latent variables. (e) The
addition of new observations leads to a combinatorial explosion in the number of latent variables. (b) MRD uses a single latent space
with ARD parameters to allow sharing and can be represented in collapsed form (f) using a known assignment variable Z that defines a
one-to-one mapping that allocates a view to a generative functional prior. (b) and (f) represent MRD with T known views, where each
view contains at least one observed dimension; therefore T ≤ D; while (c) and (g) represent fully independent MRD (fi-MRD), where
each observed dimension is assigned to its own view. (d) In an ideal model, we would infer the sharing of functional priors (magenta)
between observed dimensions from data. We would also like to infer T , the number of such functional priors, automatically from data.
(h) In our DP-GP-LVM, we learn the unknown allocation Z automatically using a Dirichlet process prior (blue).

rameters can also be interpreted as an inverse length scale.
This means that a small ARD value for a specific dimension
could have two different causes; either that the dimension
varies linearly with the view or because it is invariant to the
view (Vehtari, 2001). While the MRD only considers the
latter cause, we explicitly model both these cases; this is our
first extension to the MRD.

Inference of Views (Groupings) In MRD, the groupings
of the observed variates must be specified a priori. This
(i) restricts the data that can be used, (ii) can be very chal-
lenging to specify without supervision, and (iii) means the
representation will be sensitive to changes or errors in the
grouping provided. One approach to circumvent this is
referred to as fully independent MRD (Damianou et al.,
2016a), as in Fig. 1 (c) and (g), where a separate func-
tional prior is used for each dimension followed by a post-
processing clustering step, which means the model is no
longer generative. In addition to the unsatisfactory post-
processing, this will lead to a notable increase in the number
of parameters as a Mahalanobis metric needs to be learned
for each output dimension. Using MRD to infer views then
learning a generative model requires three steps: (i) train
fully independent MRD to learn ARD weights, (ii) cluster
weights to infer views, (iii) retrain MRD using these clusters

as views. The requirement of the views to be known a priori
is a major limitation of MRD; our proposed model, defined
in § 3, is generative and learns the appropriate groupings
and latent representation with a single objective function.

In this paper, we introduce a specific unknown indicator
variable zd that determines which latent dimensions will be
associated with each output dimension as in Fig. 1(h). Fur-
ther, to control the structure of the latent space, we introduce
a Dirichlet process (DP) prior to specify prior knowledge of
the complexity of the latent representation.

Related Models using Stochastic Processes Previous
models have combined elements of GPs with DPs. Mix-
tures of GP experts place a Gaussian mixture model on the
input space then fit each GP to the data belonging to the
specific components. An infinite mixture of GP experts uses
a DP to determine the number of components. The main
works using this approach are by Rasmussen & Ghahramani
(2002) and Meeds & Osindero (2006), who use MCMC to
approximate the intractable posterior, as well as Yuan &
Neubauer (2009) and Sun & Xu (2011), who use variational
inference. In addition, Hensman et al. (2015) combines a
DP and GP for the purpose of clustering time-series data
streams. However, as with the mixture of GP experts, their
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model focuses on supervised learning and does not address
the unsupervised task that we are studying.

The topic is related to work by Palla et al. (2012) on variable
clustering using DPs to infer block-diagonal covariance
structures in data. Wood et al. (2006) defined a prior over a
number of hidden causes and used reversible jump MCMC
to approximate a distribution over causal structures in data.

A related avenue of investigation is the multi-output GP lit-
erature, e.g., Álvarez & Lawrence (2009); Álvarez et al.
(2010); Álvarez & Lawrence (2011); Dai et al. (2017).
These works, looking at transfer learning or filling in miss-
ing data, also produce structured models and a number have
made use of the Indian Buffet Process (in contrast to a DP)
to control complexity and favor sparse explanations.

3 DP-GP-LVM
We now describe the proposed DP-GP-LVM. We assume
that the observed data are generated as a function of some
unknown latent variables X ∈ RN×Q where the N obser-
vations each come from a lower Q-dimensional latent space
such that Q� D, the number of output dimensions. Thus,
we have each output dimension yd = fd(X) + εd where
fd(·) is some function and εd ∼ N (0, β−1d IN ) is zero mean
iid Gaussian noise with precision βd. We put a standard
Gaussian prior over the latent space,

p(X) =
∏Q
q=1N (xq|0, IN ) , (1)

and place a zero mean Gaussian process prior over the func-
tions fd(·) such that:

fd(X) ∼ GP(0, k(X,X′|θd)) , (2)

p(F|X) =
∏D
d=1N (fd|0,Kθd

) , (3)

where fd ∈ RN denotes the evaluation of the function at
the latent locations X and Kθd

= k(X,X′;θd) denotes the
evaluation of some covariance function k(·, ·) with hyper-
parameters θd. As for the other random variables, we use
F to denote the concatenation of fd across d. The observed
data is then obtained from these latent functions through a
likelihood to model the Gaussian noise,

p(Y|F) =
∏D
d=1N (yd|fd, β−1d IN ) . (4)

Sharing Functional Priors As discussed in § 2, we as-
sume that our multivariate observations are not all indepen-
dent but will potentially share generative structure. From
this assumption, there are two properties we seek to encode
in our model. Firstly, we would like to encourage the ob-
servations to be grouped together, when the data supports it,
and share a common generative functional prior; that is,

fd′ ∼ GP(0, k(X,X′|θt)) ∀ d′ ∈ Dt , (5)

where Dt, t ∈ [1,∞] denotes a grouped subset of observed
dimensions such that

⋃∞
t=1Dt = [1, D].

Secondly, we do not know a priori how many groupings
there are nor what these groupings should be; therefore,
{Dt} must be inferred from the data itself. In general, there
could be an infinite set of potential groupings, however in
practice |{Dt}| ≤ D. We now describe how we achieve the
sharing of functional priors and the inference over group-
ings, a key contribution of our approach.

Function Parameterization The differences in the shared
functional priors in (5) are encoded by the hyperparameters
of the covariance functions in the GP prior (2). We adopt a
covariance function that makes use of ARD to infer a subset
of the Q latent dimensions to be used. In particular, we use
an exponentiated quadratic covariance function,

k(xi,xj ;θt) = σt
2 exp

(
− 1

2

∑Q
q=1 γt,q(xi,q − xj,q)2

)
, (6)

where the hyperparameters θt = [σ2
t ,γt] are the signal

variance σ2
t and the positive ARD weights γt ∈ RQ+. We

observe that if γt,q′ → 0 then the function has no depen-
dence on the q′ dimension of the latent space; the function
is independent of this latent dimension.

Dirichlet Process Prior As the grouping dependence
in (5) is encoded in the hyperparameters, we can express
our preference for sharing, and perform inference over the
groupings, by placing a Dirichlet process prior over the
hyperparameters (and noise precision) of the covariance
functions for each observed dimension d. The DP consists
of a base measure G0 and a concentration parameter α. We
use a wide log-normal distribution as the base measure G0.

The DP produces a discrete distribution G whose support
consists of a countably infinite (t ∈ [1,∞]) set of kernel
hyperparameters {θt} and noise precisions {βt} indepen-
dently drawing from G0. By drawing the kernel hyperpa-
rameters and noise precision from a DP,

θd, βd ∼ G, G ∼ DP
(
α, logN (0, IQ+2)

)
, (7)

the hyperparameters will be clustered; all the output dimen-
sions sharing the same set of hyperparameters are effectively
combined to form the set of groupings Dt.

Stick-Breaking Construction To represent the discrete
distribution G, we use the stick-breaking construction of
a DP. We obtain an infinite set of stick lengths vt ∈ [0, 1]
through independent draws from a beta distribution,

p(vt|α) = Beta(vt|1, α) , (8)

using the concentration parameter α. From these stick
lengths, we obtain a vector of mixing proportions πt(V) =

vt
∏t−1
i=1(1 − vi) . We also obtain an infinite set of ker-

nel hyperparameters and noise precisions {θt, βt} through
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Figure 2. Graphical model of DP-GP-LVM. The grey node yn,d

is observed while all the white nodes represent latent random
variables. During inference, all the latent variables are marginal-
ized, except the kernel hyperparameters and noise precision
{γt, σ

2
t , βt}, where MAP estimates are used.

independent draws from G0,

p(θt, βt|G0) = logN (θt, βt|0, IQ+2) . (9)

G is constructed as G =
∑∞
t=1 πt(V)δ{θt,βt}. We intro-

duce an assignment variable zd which associates the kernel
hyperparameters and noise precision for observed dimen-
sion d to a specific draw fromG0. We obtain the assignment
variables through independent draws from a multinomial
distribution,

p(zd|V) = Mult(zd|π(V)) , (10)

where we may consider zd as a one-hot encoding vector of
dimension d belonging to set Dt.

The Full Model We combine all these terms to produce
the full graphical model of Fig. 2. The full joint distribution
factorizes as,

p(Y,F,X,Z,V, α,Θ,β) = p(Y|F,β,Z) p(Θ,β)

p(F|X,Θ,Z) p(X) p(Z|V) p(V|α) p(α) , (11)

where the individual factors have been defined in (4), (9),
(3), (1), (10), (8), and we use a wide gamma prior over the
concentration parameter p(α) = Gamma(α|s1, s2). During
learning, we deal with the intractable marginalizations using
variational inference as detailed in § 3.2.

Although (4) and (3) are not conditioned on Z, they are
conditioned on βd and θd, respectively. Given the DP prior,
θd =

∏∞
t=1 θt

[zd=t] and βd =
∏∞
t=1 βt

[zd=t], where [·] is
the Iverson bracket notation for the indicator function.

3.1 Special Cases of DP-GP-LVM

DP-GP-LVM can be seen as a generalization of both the
Bayesian GP-LVM (BGP-LVM) (Damianou et al., 2016b)
and the MRD (Damianou et al., 2012) model. We show this
with reference to the full model of (11) and Fig. 2. In the

BGP-LVM, the observed dimensions are assumed to be iid
draws from the same functional prior. This is captured in our
model by taking the limiting case of a single cluster from
the DP (such that α→ 0). In this setting, we have a single
set of hyperparameters (and noise precision) shared across
all dimensions d. Additionally, latent variables {Z,V, α}
may be removed from the model. In practice, BGP-LVM is
recoverable as α can tend towards zero if it fits the data.

Similarly, in the case of MRD, illustrated in Fig. 1 (b), (f),
the grouping structure is specified a priori and not inferred
from the data. In this instance, the allocation variable Z
becomes observed (dictating the known allocation of dimen-
sions into a finite set of T groups {Dt}, t = [1, T ]) and
the model collapses to that of MRD. The observation of Z
renders the latent variables {V, α} unnecessary.

3.2 Learning

To perform learning of the joint model of (11) we would like
to marginalize out the latent variables {F,X,Z,V, α} and
take MAP estimates over the hyperparameters and noise
precisions {Θ,β}. This corresponds to optimizing the
marginal log-likelihood of the observed data,

log p(Y,Θ,β) = log

∫
p(Y|F,β,Z) p(Θ,β) p(F|X,Θ,Z)

p(X) p(Z|V) p(V|α) p(α) d{F,X,Z,V, α} . (12)

Unfortunately, a number of these integrals are intractable
and cannot be found in closed form. To make progress,
we introduce variational distributions to approximate the
posteriors over the latent variables, in a similar manner
to Damianou et al. (2016b) and Blei & Jordan (2005), and
then optimize the Evidence Lower Bound (ELBO) directly.

Lower Bound We introduce a fully factorized variational
distribution q(F,X,Z,V, α) over the latent variables. With
Ω = {F,X,Z,V, α} as the latent variables, we have:

log p(Y,Θ,β) = log

∫
q(Ω)

p(Y,Θ,β,Ω)

q(Ω)
dΩ (13)

≥ Eq [log p(Y,Θ,β,Ω)] +H[q(Ω)] := L ,

with the lower bound as L. We decompose the lower
bound into expressions from the GP ({F,X,Z}) and the
DP ({Z,V, α}) such that

L = Eq(Z) [LGP ] + LDP + log p(Θ,β) . (14)

GP Approximating Distributions As noted by Damianou
et al. (2016b), the lower bound on the GP,∫

F,X

q(F) q(X) log
p(Y|F,β,Z) p(F|X,Θ,Z) p(X)

q(F)q(X)
, (15)

is still intractable due to the presence of X inside the co-
variance function in p(F|X,Θ,Z). We make progress by
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extending the output space of the GP with a random variable
U drawn from the same GP at some pseudo input locations
Xu such that ud ∼ GP(0, k(Xu,X

′
u|θd). These locations

are taken as variational parameters and are optimized within
the lower bound.

If we assume that the U form a sufficient statistic
for the outputs F, then we have p(F,U|X,Xu) =
p(F|U,X)p(U|Xu). Further, if we assume that the
approximating distribution factorizes as q(F,U,X) =
p(F|U,X)q(U)q(X) then we have∫
F,U,X

p(F|U,X) q(U) q(X) log
p(Y|F,β,Z) p(U|Xu) p(X)

q(U) q(X)
, (16)

where all the terms are tractable. The optimal q(U) is
found to be Gaussian through variational calculus (Dami-
anou et al., 2016b) and marginalized out in closed form.
A fully factorized Gaussian form is taken for q(X) =∏Q
q=1N (xq|µq,Σq), where Σq are assumed diagonal.

GP Bound This leads to a GP lower bound of

Eq(Z) [LGP ] =
∑D
d=1 Fd −KL(q(X)‖p(X)) , (17)

where the free energy Fd is given by:

Fd =
N

2
log βd +

1

2
log
∣∣∣K(d)

uu

∣∣∣+ βd
2
Tr([K(d)

uu ]−1Ψ2)

− N

2
log (2π)− 1

2
log
∣∣∣βdΨ2 + K

(d)
uu

∣∣∣− βd
2
ψ0 (18)

− 1

2
yTd

[
βdIN − β2

dΨ1

(
βdΨ2 + K(d)

uu

)−1
ΨT

1

]
yd,

the sufficient statistics for the covariance kernels are

ψ0=Tr
(
Eq[K(d)

ff ]
)
, Ψ1=Eq[K(d)

fu ], Ψ2=Eq[K(d)
uf K

(d)
fu ] , (19)

and the kernel hyperparameters θd and noise precision βd
are their expected value with respect to Z. θd and βd are de-
fined in (22) and (23), respectively. The covariance matrices
notation defines how the covariance function was evaluated.
The input locations are provided as the subscripts, with f
denoting X and u denoting Xu, and the superscript denoting
the hyperparameters θd.

DP Approximating Distributions As specified previ-
ously, we use a stick-breaking construction of the DP
and introduce variational distributions over the assign-
ment variables Z, the stick lengths V, and the concentra-
tion parameter α as a factorized distribution q(Z,V, α)=
q(Z)q(V)q(α) in a similar manner to Blei & Jordan (2005).
In order to deal with the infinite support of the DP, we artifi-
cially truncate the number of components to T < ∞. We
note that this is not a particular limitation of our approach,
since, in general, the number of grouped functional priors
will not exceed the number of observed dimensions D.

The truncated stick-breaking representation assumes that
the likelihood of the length of the stick drawn at T is 1,
therefore q(vT = 1) = 1 and πt(V) = 0 for all t > T .
This allows a finite approximating distribution to be used
over the stick lengths; we use beta distributions such that

q(V) =
∏T−1
t=1 Beta(vt|at, bt) , (20)

with a and b as variational parameters. The truncation at T
also allows us to use a parameterized multinomial for the
approximate distribution over Z as

q(Z) =
∏D
d=1 Mult(zd|φd),

∑T
t=1 φd,t = 1 . (21)

For the concentration parameter we introduce a gamma ap-
proximating distribution q(α) = Gamma(α|w1, w2). We
use MAP estimates for the kernel hyperparameters and noise
precision {θt, βt}; therefore, we have T sets of free param-
eters representing them. The expected values of the kernel
hyperparameters and noise precision with respect to the as-
signment variable Z are needed in (17). They are defined as
the following:

θd = Eq(zd)

[∑T
t=1[zd = t] · θt

]
=
∑T
t=1 φd,t · θt , (22)

βd = Eq(zd)

[∑T
t=1[zd = t] · βt

]
=
∑T
t=1 φd,t · βt . (23)

DP Bound These approximations lead to a tractable DP
lower bound of

LDP =
∑D
d=1

[
Eq[log p(zd|V)]

]
+ Eq[log p(V|α)]

+Eq[log p(α)] +H[q(V)] +H[q(Z)] +H[q(α)] , (24)

where all terms are defined over standard exponential family
distributions.

Optimization We optimize directly the objective of (14)
with respect to the variational parameters {F,X,Z,V, α}
and the hyperparameters and noise precisions {Θ,β}. We
initialize the mean parameters µ for q(X) with the first
Q principal components of the observed data Y and set
all Σq = 1

2IN . The pseudo input locations Xu are initial-
ized to a random subset of µ. The stick length parameters
a and b are drawn from a standard log-normal. The al-
location parameters Φ are drawn from a standard normal
pushed through the soft-max function. The hyperparame-
ters and noise precisions are initialized with draws from
their log-normal priors. Finally, the shape and scale for
the gamma distribution over α are initialized to their prior
w1 = s1 = w2 = s2 = 1. In our experiments, we evaluate
the variational lower bound (14) and optimize it directly in
TensorFlow (Abadi et al., 2015) using gradient descent with
momentum. TensorFlow performs automatic differentiation
to calculate gradients through the graph. This allows us
to train the model without needing to calculate the partial
derivatives of the lower bound with respect to each varia-
tional parameter.
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(a) ARD Weights (b) DP Assigment

Figure 3. DP-GP-LVM latent factorization of synthetic data set.
(a) The top panel shows the ground truth grouping while the lower
panel indicates the inferred grouping by DP-GP-LVM where a
column indicates the latent dimensions in X allocated to represent
the corresponding observed dimension Y. (b) The posterior DP
allocations show that only two views are found and provides the
correct allocations. The actual indices of the latent variables are
not important due to the interchangeable characteristic of the DP.

Prediction and Missing Data After training, prediction
from the latent space follows straight forwardly from the
BGP-LVM (Damianou et al., 2016b), where each dimension
d takes the kernel parameters from their respective posterior
distribution. As the model is fully generative, imputation of
missing data is also a simple task. The model can be trained
neglecting the observations for the missing data and then
their value can be predicted from the posteriors conditioned
on the observed data. To infer the latent manifold location
for a new observation Y∗, we add additional variational
parameters for q(X∗) and optimize the lower bound for the
new joint model {Y,Y∗}. The ratio of the lower bounds of
the joint model to the original approximates the probability
of the new data, as described by Damianou et al. (2016b).

Appendices The appendices provide a derivation of the
lower bound (14) (§ A), a stable calculation of the GP lower
bound (18) (§ B), and the closed form solutions of the ker-
nel expectations (19) (§ C) and the DP lower bound (24)
terms (§ D). § E defines an alternative latent space prior.

4 Experiments
We test the model on four different data sets with the aim
of providing intuition to the benefit of our approach in com-
parison with previous models. Additional results are in
appendix § G. As a first experiment we create a synthetic
data set, with known groupings, shown in Fig. 3. The data
is generated by specifying a GP and using samples from
the model as observations. The twenty-dimensional data
were generated from three latent variables, where the first
ten observed dimensions covary with latent dimensions one
and two, and the second ten observed dimensions covary
with latent dimensions one and three creating two distinct
groups. We observe that the DP-GP-LVM correctly recovers
the latent structure underlying the creation of the data.

Motion Capture Datasets Motion capture data is repre-
sented in high-dimensional vector spaces but due to the

underlying structure of the motion and the human body
the data resides on a much lower-dimensional manifold.
These correlation structures are challenging to specify a
priori making this data ideal to demonstrate our approach.
PoseTrack (Andriluka et al., 2018) consists of spatial im-
age locations corresponding to an underlying human 3-D
motion. We create two separate data sets corresponding
to the motion of two and four individuals to allow evalua-
tion of groupings both within and between individuals. We
compare the DP-GP-LVM with a model where the observed
data is considered as a single group (BGP-LVM) and where
each dimension is in its own group (fully independent MRD:
fi-MRD). Importantly, our model contains both these two
cases but marginalizes over them and all other combinations.

Fig. 4 shows the results for four individuals; an expanded
figure and results for two individuals are provided in ap-
pendix § G. Unsurprisingly, the fi-MRD model, where
each dimension is a group, fails to capture the correlation
structure and creates a large number of groups. BGP-LVM,
where all dimensions belong to a single group, reduces to
three shared dimensions, while the DP-GP-LVM uses com-
binations of four dimensions. The subtle variations, which
the DP-GP-LVM captures with its fourth dimension, will be
explained away as noise in BGP-LVM as it is not present in
a majority of the dimensions (representation pollution).

Fig. 4(d) shows the mapping of the groupings of the joints
superimposed onto the image. The model has grouped joints
on the upper-body, which have mainly translational varia-
tion, separately from the lower-body, which additionally
have significant oscillation due to the leg movement. There
is also a third group which is only present in one of the
individuals corresponding to a difference in translational
movement.

In a third data set, we apply the model to a 3-D motion
of a horse (Abson, 2014) shown in Fig. 5 with further de-
tails in the appendix (§ G). The skeleton consists of 46
joints leading to 138 observed dimensions. We show the
model’s ability to learn from small data using only 63 time-
steps. Again, the BGP-LVM over simplifies the structure
and fi-MRD over complicates it. The inferred structure,
in Fig. 5(b), confirms the differences in grouping are from
the periodic motion of the limbs compared to the head and
torso.

The oi-VAE of Ainsworth et al. (2018) intends to learn inter-
pretable latent representations. For a qualitative comparison
in Fig. 6, we learn a representation of the walking sequences
used in Fig. 3 in Ainsworth et al. (2018). Following their
results, we show the three most significant joints for each
latent dimension. Similarly, our method groups together
dimensions in a interpretable manner, where the first dimen-
sion corresponds to the left and right hands, the second to
the arms and the third to the upper body. Importantly, our
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(a) BGP-LVM (b) MRD (c) DP-GP-LVM (d) DP-GP-LVM Inferred Groups

Figure 4. Results for PoseTrack data set with four individuals. (a)-(c) the ARD weights found for the three models (Observed dimensions
on the horizontal axis and latent dimensions on the vertical). BGP-LVM increases to three latent dimensions but without the independence
structure captured by DP-GP-LVM. (d) Here we show the learned groups (posterior over Z) as the color of the points overlaid on the first
frame of the image. The path traces out the future motion. We observe the separation of the clusters into translation and periodic motions.

Table 1. Log-likelihood for imputed distributions against ground truth for the PoseTrack missing data experiments.
Dataset PoseTrack 2 Person PoseTrack 4 Person

Ñ Missing (%) 10 10 10 20 20 20 10 10 10 20 20 20
D̃ Missing (%) 10 20 30 10 20 30 10 20 30 10 20 30

BGP-LVM −50.02± 12.32 − 93.39± 18.84 −157.67± 32.20 −61.64± 13.95 −134.08± 22.73 −191.90± 33.57 −121.06± 24.10 −189.52± 34.73 −358.36± 52.06 −102.98± 24.06 −209.79± 37.35 −322.79± 59.27

fi-MRD −40.62± 10.64 −109.73± 17.36 −138.67± 14.84 −54.92± 8.51 −149.36± 11.36 −248.89± 36.79 −28.55± 0.73 −56.45± 1.34 −123.47± 27.63 −73.89± 1.23 −147.42± 2.03 −270.04± 45.07

DP-GP-LVM −18.11± 0.48 − 35.83± 0.44 − 54.07± 0.49 −52.28± 0.29 −104.76± 0.47 −158.4± 0.81 −28.14± 0.92 −55.44± 1.69 −107.41± 2.61 −71.80± 1.87 −143.06± 3.26 −311.39± 1.31

(a) ARD Weights (b) Effect of X3

Figure 5. Horse walking motion capture data set. (a) The ARD
weights demonstrate that fi-MRD (top) is unable to learn a rea-
sonable factorization of the latent space while the DP-GP-LVM
(bottom) uses three dimensions with the first two shared and the
third encoding the oscillating motion at certain joints when the
horse is walking. BGP-LVM models the data with two shared
latent dimensions, losing the structure. (b) The horse at a middle
frame where each joint has a line showing the position in past and
future frames with the color modulated by the third ARD weight.

method does so without the need to specify the views or the
number of latent dimensions, and we use less than 5% of
the training data (150 frames vs 3,791).

Quantitative Missing Data Evaluations To quantify the
efficacy of our approach, we performed a comparison for
imputing missing data for the PoseTrack data sets. Table 1
shows the predictive log-likelihood of the held out ground-
truth test data under each model. The Ñ and D̃ parameters
indicates the percentage of the data set removed (in terms
of samples and dimensions respectively) and held out as
missing data. The missing samples and dimensions were
taken out at random with 10 repeat samplings to provide the
mean and standard error results in the table (see appendix
§ G for more details). The DP-GP-LVM provides superior
estimates for the missing data since it captures the correct
dependency structure in the data. The over simplification of
the single group model leads to structure explained as noise,

lhand rhumerus lclavicle lowerback rthumb
rhand lhumerus rclavicle rhumerus head

lthumb lradius head root lclavicle

Figure 6. Top: Latent factorization for each joint in walking se-
quence. Bottom: The three joints with the most importance for
each latent dimension. The left-most column corresponds to the
top latent dimension in the factorization plot.

which cannot be used to constrain the missing data. On the
other hand, the fi-MRD, which is much more expensive to
compute (see appendix § F), fails to exploit all the depen-
dencies in the data resulting in a reduction in precision for
the missing data.

5 Conclusion and Future Work
We presented a generative, non-parametric, latent variable
model with the ability to learn dependency structures in
multivariate data. Our approach is capable of organizing
the observed dimensions into groups that covary in a consis-
tent manner. The model extends previous non-parametric
formulations of IBFA by disentangling the factorization of
the latent space with the characteristics of the generative
mapping.

We intend to investigate further kernel combinations and
latent priors for a wide range of applications. In addition,
we intend to adapt the inference procedure to improve scala-
bility and allow for online inference where the number of
groupings continually evolves with more data.
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