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Abstract
Bayesian optimization (BO) methods often rely
on the assumption that the objective function is
well-behaved, but in practice, this is seldom true
for real-world objectives even if noise-free obser-
vations can be collected. Common approaches,
which try to model the objective as precisely as
possible, often fail to make progress by spend-
ing too many evaluations modeling irrelevant de-
tails. We address this issue by proposing surrogate
models that focus on the well-behaved structure
in the objective function, which is informative
for search, while ignoring detrimental structure
that is challenging to model from few observa-
tions. First, we demonstrate that surrogate models
with appropriate noise distributions can absorb
challenging structures in the objective function
by treating them as irreducible uncertainty. Sec-
ondly, we show that a latent Gaussian process is
an excellent surrogate for this purpose, compar-
ing with Gaussian processes with standard noise
distributions. We perform numerous experiments
on a range of BO benchmarks and find that our
approach improves reliability and performance
when faced with challenging objective functions.

1. Introduction
Bayesian optimization (BO) (Snoek et al., 2012) is a method
for finding the optimum of functions that are unknown and
expensive to evaluate. By fitting a surrogate model to the
samples of an unknown objective, the BO procedure itera-
tively picks the new samples of the objective believed to be
the most informative about where the optimum is located.

Model misspecification has significant negative implications
for any machine learning tasks. This is especially true for
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sequential decision making tasks such as BO, where the
model is used not only to locate the optimum based on the
collected data but also to decide where to collect data for
future decisions. If the surrogate model is misspecified, it is
likely to acquire samples that are less informative about the
optimum, which will lead to a less efficient optimization.
Therefore the quality of the surrogate model is essential to
achieve both efficient and reliable results.

Many works have been done towards avoiding model
misspecification in the surrogate model for BO, such as
handling non-stationary objective functions with warp-
ings (Snoek et al., 2014), tree-structured dependencies in
the search space (Jenatton et al., 2017), and searching the
optimum from piecewise comparisons (González et al.,
2017). Comparing with the Gaussian process (GP) regres-
sion model in the standard BO setting, these methods avoid
model misspecification in real-world problems by using
more sophisticated surrogate models that are suitable for
the corresponding problems. Bayesian inference with more
sophisticated surrogate models will often require additional
data to reduce uncertainty and confirm beliefs, because it
considers more possibilities. Importantly the ultimate goal
of BO is to find the optimum, not to model the unknown ob-
jective as precisely as possible. In practice, this means that
using a surrogate with high complexity might perform worse
compared to a simpler class even if the former contains the
true objective function.

Instead of building a complex surrogate model with minimal
model misspecification, we propose an alternative approach
which allows trading off accuracy in modeling the objec-
tive with efficiency of capturing informative structures from
small amounts of data. For example, we observe that struc-
tures such as local oscillations and discontinuities are less
important to capture for the purposes of BO. Such details of-
ten require a lot of data to be closely captured in a surrogate
model but do not help the search for the optimum, unless
the search reaches the last stage of pinpointing the exact lo-
cation of the optimum. To ignore these details, we associate
an independent random input variable with every evaluation
of the unknown function. As the random variables asso-
ciated with new evaluations are conditionally independent
of the posterior random variables associated with observed
data given the function, this is referred to as irreducible
uncertainty. Such variables are similar to the noise variables
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Figure 1. An illustrative example of the posterior surrogate function density obtained given observations of a 1D nonsmooth function
using a noise-free GP, a GP with homoscedastic Gaussian noise, and using a LGP model. The posterior belief for the noise-free and
homoscedastic GP surrogates results in the EI acquisition function, shown in blue, making poorly informed decisions for the next query.
In contrast, the LGP using our proposed setup is able to reduce the influence of the rapid oscillations that do not match the GP prior by
explaining part of the variation using the latent input. As a result, the acquisition function can utilize a confidently discovered global trend
to increase the efficiency of the search. In this example, σh is set to 1

50
of the domain range to allow ignorance of oscillations at that scale.

in regression models, which are used to capture measure-
ment noise and the data variance that cannot be attributed to
the input variables. In contrast to noise variables for noisy
outcomes, where there is irreducible uncertainty about the
data, there is now irreducible uncertainty in the model of
the function.

We propose to use the surrogate models that are specified
over well-behaved approximations of the objectives, which
can be more useful for the search of the optimum (see Fig-
ure 1), augmented with flexible “noise” distributions to treat
the nuisance parameters. We will demonstrate that, using
the same function approximation, a surrogate model with
a more flexible nuisance parameter distribution is more ro-
bust against challenging structures. In this paper we focus
on noise-free objectives with complicated, oscillatory or
discontinuous structures. In particular, we propose to use
a Latent Gaussian process (LGP) (Pfingsten et al., 2006;
Wang & Neal, 2012; Yousefi et al., 2016; Bodin et al., 2017)
as the surrogate model due to its flexible nuisance parame-
ter distribution and show that it outperforms the surrogate
models with less flexible distributions such as GPs with
additive likelihoods. LGP allows us to disentangle the com-
plicated structures a GP surrogate struggles to model while
highlighting important structures.

Our main contributions are:

• We propose to address challenging objective functions
for BO by using a distribution in the surrogate model
to explain structure that is challenging to model with
few observations.

• We propose to use latent Gaussian processes (LGP) as
surrogate models, which support non-stationary and
non-Gaussian residuals.

• With experiments on multiple BO benchmarks, we
show that our method significantly outperforms exist-
ing approaches.

2. Modulating Surrogates
Let f : X → R be an unknown, noise-free objective func-
tion defined on a bounded subset X ⊂ RQ. The goal of BO
is to solve the global optimization problem of finding

xmin = argmin
x∈X

f(x). (1)

In real world problems, the objective function is often not
a well-behaved function and a suitable model is difficult to
specify. Instead of applying an automated model selection
method (Malkomes & Garnett, 2018), we propose to model
only the essential structure of the objective function that is
well-behaved and leave the rest of the function details to be
absorbed in a noise distribution.

We consider the family of objective functions f that can be
represented as a composition of a well-behaved function and
another arbitrary, latent function capturing the challenging
details, i.e.

f(x) := g(x,h), h := h(x), (2)

where g is a well-behaved function that can be nicely mod-
eled by a surrogate model of choice, which is a Gaussian pro-
cess (GP) in this paper, and the vector-valued function h(x)
encodes the structures which the surrogate model struggles
to capture. In general this composition allows for compli-
cated interactions between x and h, producing complicated
realizations of the function which is observed through data.
A simple, special case of a function composition is additive
structure 1, i.e. f(x) = g(x) + h(x).

Instead of modeling h(x) as part of the surrogate model,
we propose to ignore the structure of the objective function
in h(x) by replacing h(x) with a random variable h per
data point. The random variables h for different data points
are independent among each other. The objective function

1Note that in the additive case, h(x) must match the output in
shape, i.e. be one-dimensional.
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becomes a function of two variables g(x,h), in which h is a
random variable which explain the data variance that cannot
be explained by x. In this paper, we use a normal distribu-
tion for the prior of h, h ∼ N (0, I). Note that, although the
distribution of h(x) induced by the data distribution for x
may not be zero-mean and unit-variance, it is easy to refor-
mulate it as a linear transformation of a normal distribution
with zero-mean and unit-variance and the resulting linear
transformation can be absorbed into the function g. For
further details on the definition, see the supplement.

With the above formulation, a BO method can be devel-
oped by constructing a model of the well-behaved function
g and a model of h. At each step of the BO optimization,
a set of input and output pairs of the objective function
has been collected, denoted as X = (x1, . . . ,xN )> and
F = (f1, . . . ,fN )>. The output F denotes the noise-free
observations of the objective function. The Bayesian infer-
ence of the model aims at inferring the posterior distribution

p(H,θ |X,F ) ∝ p(F |X,H,θ) p(H) p(θ) (3)

where θ are the hyperparameters of the surrogate model and
H = (h1, . . . ,hN )> is the concatenation of the nuisance
parameters associated with the individual data points. The
location of the next evaluation is determined according to an
acquisition function, which uses the predictive distribution
p(f∗ |x∗,X,F ) of the surrogate model,

p(f∗ |x∗,X,F ) =

∫
p(f∗ |x∗,h∗,X,F ,H,θ)

p(H,θ |X,F ) p(h∗) dH dθ dh∗,

(4)

where x∗ is the input of the prediction and f∗ is the noise-
free observation at the location x∗. The predictive distri-
bution of the latent variable p(h∗) associated with new
evaluations is as of the i.i.d. assumption equal to the prior.
As such p(h∗) contains model uncertainty irreducible by
the active sampling loop, which we suggest to ignore via
augmentation, see the supplement for details.

With the predictive distribution Eq. 4, the expectation of the
acquisition function is derived as

α(x∗) =

∫
U(f∗,x∗,X,F )p(f∗|x∗,X,F ) df∗, (5)

where the acquisition function of choice is denoted U. Note
that the predictive distribution due to the marginalization
overH and θ generally has a complicated form and that the
above integral often requires approximate methods.

3. Latent GP surrogates and other choices
In the previous section we presented the BO formulation.
We will now proceed to implement the formulation, and ad-
dress the choice of surrogate model for the function (Eq. 2).

Additive noise model. As briefly mentioned in the previ-
ous section, a simple case of the composition (Eq. 2) is an
additive structure, f(x) = g(x) + h(x). Following the
process of replacing h(x) with the random variable h, the
resulting surrogate model of the objective function is

f(x) = g(x) + h, h ∼ N (0, σ(x)2), (6)

where the variance of h is assumed to be σ2 in order to adapt
to the value range of f . With a GP surrogate model for g,
the above model recovers the GP regression model with the
Gaussian likelihood.

A typical choice in the above model is to assume σ2 to be
constant, leading to a homoscedastic model. A limitation
of noise variances being the same across all the datapoints
is that it limits the capability of the model in terms of ab-
sorbing irregular variance. A straight-forward extension
of the above model is the GP with heteroscedastic noise,
in which the noise variance σ2 is allowed to be different
among data points (Goldberg et al., 1998; Lázaro-Gredilla
& Titsias, 2011). Another choice could be specifying a GP
prior for h(x) and thus recover an additive GP model for
f (Bernardo et al., 1998; Duvenaud et al., 2011). Other avail-
able choices for an additive noise model include Student’s
t-distribution (Jylänki et al., 2011), Laplace (Kuss, 2006)
or mixture of Gaussian likelihoods as (Kuss, 2006; Stegle
et al., 2008; Naish-Guzman & Holden, 2008) where (Naish-
Guzman & Holden, 2008) considers the heteroscedastic
case.

Latent Gaussian process. A major limitation of the addi-
tive noise models in general is the inability to capture the
interaction between the input x and the noise h. Another
choice that produces a more flexible noise distribution is to
introduce additive noise in the input of a GP (McHutchon &
Rasmussen, 2011; Girard et al., 2003; Girard, 2004). This
would correspond to the case of f(x) = g(x+h). A further
more general case of the proposed methodology is to allow
non-linear interactions between the random variable h and
x. This can be formulated as

f(x) = g(x,h), g ∼ GP, h ∼ N (0, I). (7)

This formulation aligns with the general assumptions pro-
posed in the previous section. In particular, the well-behaved
function g is assumed to follow a GP prior distribution, and
the random variable derived from the challenging details of
the objective function h feeds directly into the GP surrogate
model. This allows for an arbitrary interaction between h
and x, as specified by the covariance function. The introduc-
tion of the random variable h in the input results in a flexible
noise distribution, as the GP model can warp the normal
distribution of h into a sophisticated distribution and allow
non-linear interactions between h and x. This GP model in
(7) is also known as a latent Gaussian process (LGP) (Pf-
ingsten et al., 2006; Wang & Neal, 2012; Yousefi et al.,
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Figure 2. Input-related invariance. Each plot is showing the resulting modulated function posterior using the LGP model and setting
σh in p(h) to a size corresponding to the red line at the bottom of respective plot. The posterior is shown with mean and two standard
deviations. The true function is shown in black. Note how the value of the prior σh sets the scale in relation to X on how much detail is
ignored. A connection can be made to low-pass filtering of higher frequencies, but where the filter varies between observations as of the
posterior and where each filter is implicitly determined by fit to the function prior.

2016; Bodin et al., 2017), which is developed for regression
with heteroscedastic noise and non-Gaussian residuals. The
non-Gaussian marginals arise as a consequence of the latent
covariates and their nonlinear transformation through the
covariance function.

Function modulation via H If we assume a stationary
kernel over the product space X ×H, a constant hn for all
observations can be interpreted as theH subspace having no
influence. This is due to the stationary property of the kernel,
where covariances are determined only by the distances
between points.

With everything else held constant, if an observation is
moved away from other observations in the H space, the
covariances between that observation and the others are
reduced. Similarly, if the length scale in X -direction is
shortened, the covariances between that observation and
the others can be equally reduced, but that also reduces the
covariances between all other observations due to the global
influence of the hyperparameter.

Structures in the data could be explained solely by reduc-
ing the X -direction length scale adequately. In that case,
evaluating the posterior at h∗ = 0 would yield exactly the
posterior of a standard GP. Conversely, structures could be
explained solely as observations being adequately far from
each other in the H space while maintaining a longer X
length scale. Evaluating the posterior at h∗ = 0 then yields
a posterior that is both influenced by the longer length scale
and which has lower covariances with the data, effectively
producing a posterior over smoother functions. If the poste-
rior inputs H are sufficiently far away with respect to the
H-direction length scale, all data variation will be captured
in H and the posterior of the function at h∗ = 0 will in
effect ignore the data.

The posterior weighting over this range of solutions is de-
termined by the trade-off between the GP function prior
and the prior of the latent inputs. As such, by controlling
this trade-off, we can control properties of structures to be
ignored and the ones to be used for search (see Figure 2).
Important to note is that the mentioned data ignorance ef-
fect affects individual data points via the posterior of the
corresponding latent input hn, which is influenced by the
local and global fit of the function prior.

Reparameterization of LGP for ease of specifying the
modulation prior In a BO setting, some prior knowledge
about what constitutes a significant change in the input space
is often available. We would like to specify a joint prior of
the GP and the latent inputs to ignore structures at the appro-
priate scale. In order to do this, we (re)-parametererise it in
the following way. We set the lengthscale in theH-direction
to be the same as in the X -direction and parameterize the
latent input prior as N (hn|0, σ2

hI) instead of a unit Gaus-
sian. There is an equivalence between parameterizing σh
or setting this trade-off via a separate lengthscale for H
as in (Wang & Neal, 2012). However, by using the above
parameterization there is a direct correspondence in covari-
ance reduction from moving an observation in H as in X ,
and the prior for the latent inputs can be interpreted as a
prior over the coarseness of the function we wish to exploit
for search. As such, intuitions about the scale in X directly
translate into the parameterization of the prior. See Figure 2
for a visualization of how changing σh in the prior affects
the modulated function posterior. To make the σh parame-
terization relevant across input sizes and dimensionalities,
we rescale the input domain X to be a unit hyper-cube and
set σh proportionally to the length of the diagonal of the
domain

√
Q (where Q is the number of dimensions).
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Posterior inference and acquisition calculation. In BO
we assume that N pairs of inputs and outputs X =
(x1, . . . ,xN )> and F = (f1, . . . ,fN )> have been col-
lected. To suggest the location for the next evaluation, we
first need to infer the posterior distribution of the latent vari-
ables, which are H and θ in LGP, and then search for the
maximum of the acquisition function α(x).

Given the observed data, the probabilistic model of LGP is
formulated as

p(F |X,H,θ) = N (F |0,K),

p(H) =

N∏
n=1

N (hn|0, σ2
hI),

(8)

whereK is the covariance matrix computed using a chosen
kernel function k(·, ·) over the set of data points {x̄n}Nn=1,
and x̄n is the concatenation of two vectors (x>n ,h

>
n )>.

Because h>n enters the kernel function non-linearly, it is
clear that the posterior distribution p(H,θ |F ,X) is in-
tractable. To ensure the quality of the acquisition function,
usually, BO methods draw posterior samples of latent vari-
ables via Markov Chain Monte Carlo (MCMC) methods
such as slice sampling (Snoek et al., 2012) or Hamiltonian
Monte Carlo (Duane et al., 1987). We follow this practice
and provide details in the supplement.

With the approximate posterior samples {Hi,θi}Mi=1, we
approximate the acquisition function with LGP in (5) with
Monte Carlo samples,

α(x∗) ≈
1

M

M∑
i=1

α̂(x∗,Hi,θi), (9)

where α̂(x∗,Hi,θi) is the acquisition function given the
latent variables of LGP, which is closed-form for common
acquisition functions such as expected improvement (EI)
and upper confidence bound (UCB).

4. Related Work
Performing BO on an objective function that is not well-
behaved is very challenging. Our method takes a Bayesian
approach by incorporating a flexible noise distribution and
utilising Bayesian inference to assign the challenging de-
tails of the objective function to the noise distribution. An
alternative approach to this problem is to perform a model
selection for the surrogate model, such that the choice of
the surrogate model becomes a trade-off between the com-
plexity of the model and the ability to locate the optimum
under limited data, which has been explored in (Malkomes
& Garnett, 2018). The approach uses a compositional kernel
grammar from (Duvenaud et al., 2013) to induce a space of
GP models to choose from. Although this and other model
selection procedures (Malkomes et al., 2016; Duvenaud

et al., 2013; Grosse et al., 2012; Gardner et al., 2017) them-
selves have shown promise, in addition to the computational
overhead, the procedures are still reliant on the existence
of suitable models in this space. It remains challenging to
handle cases where the objective function contains structure
that is both hard to specify a-priori, and that is unhelpful in
guiding the search to the optimum.

The idea of making use of noise models for dealing with
model mismatch to noise-free data is not in itself new.
In (Gramacy & Lee, 2012) it was shown that introducing
noise in the modelling of noise-free computer experiments
can lead to models with better statistical properties such as
predictive accuracy and coverage. In that work, homosce-
datic noise was addressed and used in a regression context.

In this paper we consider noise-free functions and address
model misspecification of the function surrogate, but many
works have been done to make BO resilient to noisy ex-
periments. For example, robust noise distributions such as
Student’s t-distribution have been used to make BO more
resilient to noise outliers (Martinez-Cantin et al., 2017a;b).
Approaches to address noisy experiments, via the addition
of likelihood functions, can be combined with our approach.

Hierarchical surrogate models with input warpings have
been proposed to tackle BO for non-stationary objective
functions (Snoek et al., 2014; Oh et al., 2018; Calandra
et al., 2016). A particularly successful application is hy-
perparameter optimization for machine learning methods,
in which the parameters are often presented in logarith-
mic scales. In this case, the Beta cumulative distribution
function, which only has two parameters, serves as a good
warping function (Snoek et al., 2014). Such augmentation
in surrogate models requires strong domain knowledge of
the objective function, and one often still has to control
the increased complexity of the surrogate model, which is
orthogonal to our approach.

5. Experiments
In this section we will demonstrate the benefit of our ap-
proach empirically. As the approach is motivated by ro-
bustness to the presence of challenging structures in the
objective function, we will test its ability to improve search
efficiency on a range of functions exhibiting such struc-
ture. Visual examples of functions with typical properties
are shown in Figure 3. As we will show, our approach in-
creases reliability in the search when faced with detrimental
structure (see Figure 4) that has a large negative impact on
traditional surrogates.

Baselines and metric We compare with and without func-
tion modulation (Section 2) - implemented as in Section 3 -
on a popular GP model setup for BO. In addition, we com-
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Figure 3. Surface plots of the benchmark functions Cross In Tray, Griewank, Shubert, Weierstrass and Deflected Corrugated Spring (Mc-
Court, 2016), from the left. The two right-most functions are available in multiple dimensionalities, where 8D and 10D is used in the
experiments, respectively.

Figure 4. A comparison of experiments on the Holder Table bench-
mark (McCourt, 2016) (left) and a corrupted version with added
nonsmooth structure (right). We show plots of the respective
functions and performance in terms of regret so far (over 20 repe-
titions). We show both mean regret (line) and standard deviation
(shading). The nonsmooth structure is challenging for a noiseless
GP to model and leads to a high variance in-between runs. Warped
and homoscedasic GPs explain away the corruption, but their per-
formance plateaus as no informative trends can be identified. LGP
reliably identifies these trends and reliably finds good solutions.

pare the LGP against other methods of handling challenging
structure in the objective function, namely (i) a noiseless
GP, (ii) a GP with homoscedastic noise, (iii) a GP with
heteroscedastic noise and (iv) a non-stationary, Warped
GP (Snoek et al., 2014).

We follow the standard practice to compare across bench-
marks and provide the mean gap estimated over 20 runs
as in (Malkomes & Garnett, 2018). The gap measure is
defined as f(xfirst)−f(xbest)

f(xfirst)−f(xoptimum)
, where f(xfirst) is the minimum

function value among the first initial random points, f(xbest)
is the best function value found within the evaluation budget
and f(xoptimum) is the function’s true optimum. Methods are
judged to have very similar or equivalent performance to the

best performing if not significantly different, determined by
a two-sided paired Wilcoxon signed-rank test at 5% signifi-
cance (Malkomes & Garnett, 2018). We also report regret
(with mean and standard deviation) in the supplement.

We use the Matérn 5/2 kernel for all surrogates, the ex-
pected improvement acquisition function (where not other-
wise stated) and Bayesian hyperparameter marginalisation
as in (Snoek et al., 2012). For the maximization of the ex-
pected utility with respect to input location, we use δ-cover
sampling, as in (De Freitas et al., 2012). The Warped GP
implementation and inference is from the Spearmint pack-
age (Snoek et al., 2014). For further details, we refer to the
supplement.

Benchmark datasets We perform the comparisons on
benchmarks from (McCourt, 2016; Head et al., 2018) using
the default domains provided by respective benchmark, de-
tailed in the supplement. In addition, problems are marked
with the descriptive properties given in (McCourt, 2016)
and in the supplement that can reflect the relative difficulty
of the task.

Priors on the latent input variables The prior p(hn) =
N (0, σ2

hI) can be parameterized in relation to the relative
scale of the characteristics to be ignored. We specify the
function prior over the product space X ×H using a kernel
with common parameters for xn and hn. Thus, the stan-
dard deviation of the prior σh relates directly to distances
in the X -direction. When domain-specific knowledge is
available, p(H) may be specified at an appropriate scale.
However, we often do not have access to such knowledge. In
all our experiments, we adopt a hierarchical prior approach
whereby σh is sampled uniformly from a small candidate set
at each evaluation. Specifically, σh ∼ U({0.1d, 0.01d, 0})
where d =

√
Q, the length of the diagonal of the unit Q-

dimensional hypercube. We found that this approach per-
formed well empirically and is applied consistently across
all our experiments where not otherwise specified. A choice
of σh → 0 corresponds to a noiseless GP without latent
covariates.
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Table 1. Mean gap performance for various test functions; higher is better. The upper table shows the results after 50 objective function
evaluations and the lower table after 100 evaluations. Due to computational cost, Warped GP results are only reported for 50 evaluations.
Methods not significantly different from the best performing method with respect by a two-sided paired Wilcoxon signed-rank test at a 5%
significance level over 20 repetitions are shown in bold (Malkomes & Garnett, 2018). For results in terms of regret, see the supplement.

Benchmark Evals Dim Properties GP Warped GP Homosced GP Heterosced GP LGP

Hartmann 50 6 boring 0.959 0.537 0.881 0.973 0.937
Griewank 50 2 oscillatory 0.914 0.493 0.752 0.913 0.897
Shubert 50 2 oscillatory 0.378 0.158 0.378 0.480 0.593
Ackley [−10, 30]d 50 2 complicated, oscillatory 0.924 0.274 0.892 0.912 0.927
Cross In Tray 50 2 complicated, oscillatory 0.954 0.385 0.929 0.977 0.945
Holder table 50 2 complicated, oscillatory 0.939 0.896 0.900 0.931 0.993
Corrupted Holder Table 50 2 complicated, oscillatory 0.741 0.798 0.826 0.729 0.896

Branin01 100 2 none 1.000 1.000 1.000 1.000
Branin02 100 2 none 0.991 0.964 0.990 0.981
Beale 100 2 boring 0.987 0.982 0.987 0.988
Hartmann 100 6 boring 0.987 0.947 0.984 0.979
Griewank 100 2 oscillatory 0.967 0.875 0.969 0.946
Levy 100 2 oscillatory 0.997 0.999 0.998 0.998
Deflected Corrugated Spring 100 10 oscillatory 0.347 0.840 0.406 0.697
Shubert [−10, 10]d 100 2 oscillatory 0.510 0.511 0.672 0.877
Weierstrass 100 8 complicated 0.600 0.704 0.577 0.625
Cross In Tray 100 2 complicated, oscillatory 1.000 0.995 1.000 1.000
Holder Table 100 2 complicated, oscillatory 0.971 0.963 0.964 1.000
Ackley [−10, 30]d 100 2 complicated, oscillatory 0.971 0.914 0.980 0.974
Ackley [−10, 30]d 100 6 complicated, oscillatory 0.459 0.789 0.442 0.712
Corrupted Holder Table 100 2 complicated, oscillatory 0.844 0.889 0.822 0.918
Corrupted Exponential 100 8 complicated, oscillatory 0.580 0.847 0.581 0.806

HPO: NN Boston 100 9 unknown 0.720 0.761 0.810 0.770
HPO: NN Climate Model Crashes 100 9 unknown 0.629 0.717 0.683 0.678
Active learning: Robot Pushing 100 4 unknown 0.877 0.745 0.907 0.932

Evaluation on benchmark suite Table 1 presents results
across a wide range of benchmark functions consisting of
the SigOpt benchmark suite (McCourt, 2016). Three addi-
tional real-world benchmarks (Head et al., 2018; Malkomes
& Garnett, 2018; Kaelbling & Lozano-Pérez, 2017) are in-
cluded in the bottom section of the table. The benchmarks
from (McCourt, 2016) are popular functions used in both
black-box optimization as well as classic optimization lit-
erature. As of the focus of the paper, benchmarks from the
literature exhibiting challenging properties such as oscilla-
tory local structures were included, in addition to simpler
functions for reference.

In general, the noise-free, homoscedastic and heteroscedas-
tic noise GPs tend to either share best place with the LGP
or be outperformed by it. The Warped GP, which warps
the input space to obtain a tight fit to the data, consistently
struggle with the complicated and oscillatory benchmarks.
On some benchmarks there are large differences in favour of
using noisy surrogates on the noise-free benchmarks. Such
an example is Ackley 6D, which in the dataset is described
as “technically oscillatory, but with such a short wavelength
that its behavior probably seems more like noise” (McCourt,
2016). Another example is the Shubert function, which has
multiple sharp local optima surrounded by large oscillations.

On 2 of 18 benchmarks, the LGP was not best (or within the
two-sided Wilcoxon test), but instead the homoscedastic GP.
These functions were Weierstrass, which has a homoscedas-
tic characteristic (see Figure 3), and Deflected Corrugated
Spring, on both of which the LGP obtained the second high-
est mean gap. In contrast to the LGP and the heteroscedastic
GP, the noise model of the homoscedastic GP sometimes
hurt performance in relation to the noise-free GP. Given the
black-box nature of functions in BO, it is important that
the surrogate noise model ’turns off’ adequately when not
needed. The heteroscedastic GP provided significant benefit
on two benchmarks over the GP, whereas the LGP provided
such benefit on eight benchmarks.

Real-world Apart from widely used synthetic functions,
we also compare our method on three real-world problems.
The results are shown in the last three rows of Table 1. One
of the benchmarks is an active learning task of a robot push-
ing a box within a simulation. As we show in Figure 5,
the benchmark’s response surface is both nonsmooth and
oscillatory. The LGP reliably found good solutions on the
benchmark, while the other surrogates sometimes failed, re-
sulting in high variances. The homoscedastic GP performed
the worst, which we suspect is due to the nonsmooth and
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Figure 5. Active learning: Robot pushing. The objective function to be optimized takes as input the pushing action of a robot within a
simulation, and outputs the distance of the pushed object to the goal location. The two plots on the left show that the task surface, resulting
from the dynamic system, is nonsmooth and non-trivial. The right plot shows the mean regret and standard deviations for the different
surrogates. As can be seen, the LGP found good solutions with low variance, improving reliability of the search. The 1D slices of the 4D
function (the two from the left) was generated by fixing the initial y-position (param.) to the one of the goal position, the simulation steps
(param.) to the center of its domain, and varying the initial angle (param.) or the x-position (param.), respectively, while keeping the other
fixed at zero. Slicing the 4D function differently produced similar nonsmooth response curves.

heavily oscillatory structures forces a high global noise level,
which may lead to failure in utilising informative structure
in other regions.

Other aquisition functions We suggest that the problem
with structures challenging to model is relevant to address
irrespective of the acquisition function. To confirm that
the method is applicable also using other acquisition func-
tions we ran the Corrupted Exponential benchmark using
both Expected Improvement (EI) and Lower Confidence
Bound (LCB) with the default exploration weight (= 2.0)
from GPyOpt (GPyOpt, 2016). As can be seen in Table 1,
in the case of EI, the GP and the heteroscedastic GP per-
formed worse than the homoscedastic GP and the LGP. The
homoscedastic GP achieved the highest mean gap, but the
difference was not significant under the Wilcoxon test to
the LGP which obtained a similar mean gap. Using the
LCB acquisition function the performance for the home-
scedastic GP decreased to 0.818 and the LGP increased to
0.858, and their difference in rank in favour of the LGP was
significant under the test. The heteroscedastic GP increased
using LCB to 0.797 and the GP to 0.751, remaining as worst
performing.

As the experimental evaluation demonstrates, our suggested
approach for handling challenging structures in the objective
function consistently improved reliability and performance
over the traditional surrogate on a wide range of benchmarks.
Importantly, on benchmarks where the extended methodol-
ogy were not needed the performance aligned with that of
the traditional surrogate. When it was needed, it was shown
to often have a large positive impact on overall efficiency of
the search.

6. Conclusion
We have presented an approach to Bayesian Optimization
where the surrogate model is alleviated from needing to
explain the observed objective function values perfectly,
which is challenging for complicated or nonsmooth func-
tions. Instead, we model the essential structure of the ob-
jective function that is well-behaved and leave the rest of
the function details to be absorbed in a noise distribution.
We show experimentally how our approach is able to solve
synthetic and real-world benchmarks with challenging local
structures reliably. Importantly our methodology can be ap-
plied to any surrogate model used for BO, and the specific
case addressed in the paper can be included in any Gaussian
process-based surrogate.
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González, J., Dai, Z., Damianou, A., and Lawrence, N. D.
Preferential Bayesian optimization. In Proceedings of the
34th International Conference on Machine Learning, pp.
1282–1291, 2017.

GPyOpt. Gpyopt: A bayesian op-
timization framework in python.
http://github.com/SheffieldML/GPyOpt,
2016.

Gramacy, R. B. and Lee, H. K. Cases for the nugget in mod-
eling computer experiments. Statistics and Computing,
22(3):713–722, 2012.

Grosse, R., Salakhutdinov, R. R., Freeman, W. T., and
Tenenbaum, J. B. Exploiting compositionality to ex-
plore a large space of model structures. arXiv preprint
arXiv:1210.4856, 2012.

Head, T., MechCoder, Louppe, G., Shcherbatyi, I., fcharras,
Vincius, Z., cmmalone, Schrder, C., nel215, Campos,
N., Young, T., Cereda, S., Fan, T., rene rex, Shi, K. K.,
Schwabedal, J., carlosdanielcsantos, Hvass-Labs, Pak,
M., SoManyUsernamesTaken, Callaway, F., Estve, L.,
Besson, L., Cherti, M., Pfannschmidt, K., Linzberger, F.,
Cauet, C., Gut, A., Mueller, A., and Fabisch, A. scikit-
optimize/scikit-optimize: v0.5.2, March 2018. URL
https://doi.org/10.5281/zenodo.1207017.

Jenatton, R., Archambeau, C., González, J., and Seeger, M.
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