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Figure 1. Ignoring irreducible uncertainty from p(h∗) in the acquisition. The effect of marginalizing p(h∗) as per standard versus
collapsing the irreducible uncertainty of h(x) as p(h∗) = δ(h∗) is shown on the left and the right, respectively. Note that p(H),
associated with the observations, is marginalized in both cases. The acquisition (EI) and the next sample location is shown in blue. The
posteriors are shown with mean and two standard deviations for display purposes, i.e. with estimated moments and approximated as
Gaussian. Note that by incorporating variance induced from p(h∗), which cannot be reduced by acquiring data, the search can end up in a
failure mode and get stuck by repeatedly evaluating in a region explained by high irreducible uncertainty in the objective function. By
only considering model uncertainty in the function which is reducible by active sampling, i.e. collapsing the predictive p(h∗) associated
with new evaluations, the exploration of the function continues.

The predictive distribution of the latent variable for new evaluations p(h∗), even at observed inputs locations, will always by
the i.i.d. assumption be equal to the prior. As such, this source of uncertainty cannot be reduced by active sampling, nor does
it reflect observational stochasticity which is made clear by the noiseless experiments. Including it would simply include
unhelpful artifacts in the decision upon where to collect data and in the worst case the search would be stuck, see Figure 1.
The importance of special treatment of similar uncertainty within active sampling has been noted in (González et al., 2017).

Noting the risk of ill-effects of simply marginalizing p(h∗), one might be tempted to introduce statistical dependencies in
the model such that the belief about h∗ associated with a new evaluation is updated from e.g. neighbouring observations.
However, such dependencies does not come for free, as they would by necessity limit the model’s capability to explain away
via H . For example, by constraining nuisance parameters to be similar within neighbourhoods of X the ability to be robust
to discontinuities such as step functions would be reduced.

We suggest to remove the effect h∗ has on the predictive distribution of f∗. In the case of additive models this is easily
achieved. For example, in the GP regression context with noisy observations the predictive distribution of the noise-free
latent function is easily derived by removal of the noise variable after the noise has been considered in the data. The reason
why it is easy in the additive case is because the expectation is trivially separable, as E[g + h] = E[g] + E[h]. In this paper
we consider the introduction of nuisance parameters in surrogates generally, including those with non-linear interactions. In
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the general non-linear case how to remove the interaction is an open question. For these cases, when there is no available
model-specific treatment, we propose the heuristic of collapsing the prior distribution of h∗ into a Dirac delta distribution
centered at its mode h∗ = 0, which is consistent with the additive case.

2 Further details on the objective function definition

f(x) = g(x,h), h ∼ N (0, I), (1)

where g is a well-behaved function that can be nicely modeled by a surrogate model of choice, which is a Gaussian process
(GP) in this paper, and the vector-valued function h(x) encodes the structures which the surrogate model struggles to
capture. Let’s assume an uninformative prior distribution of x over X , e.g. a uniform distribution x ∼ U(X ). We denote the
mean and variance of h(x) under the prior distribution as µh = Ep(x)[h(x)] and Σh = Ep(x)[(h(x)− µh)(h(x)− µh)>],
respectively. An important step to convert h into being part of a noise distribution is to treat it as random and independent of
x, i.e. h becomes an independent random variable with respect to each data point, just like a standard noise term. In this
paper, we use a normal distribution for h, h ∼ N (µh,Σh). In this way, the objective function becomes a function of two
variables g(x,h), in which h is a random variable independent of x and which explain the data variance that cannot be
explained by x. Note that the random variable h can be equivalently rewritten as h = µh + Lh̄, Σh = LL>, h̄ ∼ N (0, I)
and then the objective function becomes g(x, µh + Lh̄). As g is a non-linear function inferred during BO, the linear
transform can be absorbed into the formulation.

3 Additional examples
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Figure 2. Robustness to nonsmooth structures. The modulated function posterior (of the LGP) is shown in green with mean and two
standard deviations. The posterior of f (with p(h∗) marginalized) is shown with two standard deviations from its mean in red. The true
function is shown in black. Both posteriors are for display purposes approximated as Gaussian as in Figure 1. Note how some structure of
f is ignored and treated as non-additive, heteroscedastic noise.

4 Model setup, inference and auxiliary optimization
We use the Warped GP (Snoek et al., 2014) surrogate model with default settings as provided by the Spearmint library (spe).
We use the Matérn 5/2 kernel for all surrogates and the model-marginalised expected improvement acquisition function as
in (Snoek et al., 2012b). For all baselines we make us of hyper-parameter marginalisation via Markov Chain Monte Carlo
(MCMC) (Shahriari et al., 2016).

For the noise-free, homoscedastic GP and Warped GP (all with few parameters) we use slice sampling, as recommended for
BO in (Snoek et al., 2012a) due to its automatic adjustment of the step size to match the local shape of the density function.
The heteroscedastic GP has a latent noise variance per observation. Similarly, LGP has the latent inputs H associated
with the observations, making inference impractical for both of these models using slice sampling as of comparably large
dimensionalites. For these models, in all BO experiments, we use Hamiltonian Monte Carlo with step size adaptation. A
burn-in of 30, 000 steps and a thinning rate of x50 (select every 50th value) were used, and 100 posterior samples collected.
Step-size adaptation were made during 80% of the burn-in phase, with a target acceptance probabilty of 0.75 which is the
center of asymptotically optimal rate for HMC (Betancourt et al., 2014).
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Observed outputs are normalized to have zero mean and unit variance (standard normalization) at each iteration. For
the GP surrogate with and without the noise models as well using the latent input extension, we use a LogNormal(0, 1)
prior for the lengthscale and noise variance parameters and use unit signal variance. We use one dimension for the latent
variables hn in the comparisons with the baselines. For the maximization of the expected utility with respect to input
location, we use δ-cover sampling, as in (De Freitas et al., 2012), for all models (where in our case the expected utility
is the model-marginalised expected improvement). The sampling scheme works by iteratively sampling the utility more
densely in X around the location of current highest obtained utility. Specifically, we double the concentration of an uniform
sample density at each auxiliary iteration by multiplication of each side of the current sampling hypercube by a factor of
2−1/Q for 30 iterations. Without loss of generality, all function domains are re-scaled to unit hypercubes for a consistent
parameterization of priors across functions. In all experiments we start from 2 uniformly drawn initial observations and stop
after 50 and 100 observations, respectively, as indicated in the experiments.

5 Benchmarks
5.1 Property labels

For benchmark property labels, see Table 1.

Table 1. Function properties as defined in SigOpt (McCourt, 2016).
Property Meaning

boring A mostly boring function that only has a small region of action
oscillatory A function with a general trend and an short range oscillatory component
complicated These are functions that may fit a behavior, but not in the most obvious or satisfying way

5.2 Domains

pow10(x) = 10x (2)

pow2int(x) = int(2x) (3)

For benchmark domains, see Table 2.

Table 2. Benchmark function domains used as specified in SigOpt (McCourt, 2016) ’evalset’. The domains of Corrupted Holder Table and
Corrupted Exponential correspond to the ones of Holder Table and Exponential, respectively.

Benchmark Dim Properties Domain

Branin01 2 none [[−5, 10], [0, 15]]
Branin02 2 none [[−5, 15], [−5, 15]]
Powell Triple Log 12 none [−4, 1]12

Beale 2 boring [−4.5, 4.5]2

Hartmann 6 boring [0, 1]6

Griewank 2 oscillatory [−50, 20]2

Shubert01 2 oscillatory [−10, 10]2

Levy13 2 oscillatory [−10, 10]2

Cosine Mixture 10 oscillatory [−1, 1]10

Drop-Wave 10 oscillatory [−2, 5.12]10

Deflected Corrugated Spring 10 oscillatory [0, 7.5]10

Weierstrass 8 complicated [−0.5, 0.2]8

Cross In Tray 2 complicated, oscillatory [−10, 10]2

Holder Table 2 complicated, oscillatory [−10, 10]2

Ackley [−10, 30]d 2 complicated, oscillatory [−10, 30]2

Ackley [−10, 30]d 6 complicated, oscillatory [−10, 30]6

Corrupted Holder Table 2 complicated, oscillatory [−10, 10]2

Corrupted Exponential 8 complicated, oscillatory [−0.7, 0.2]8

NN Boston 9 unknown Table 3
NN Climate Model Crashes 9 unknown Table 3
Robot Pushing 4 unknown Table 4
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Table 3. Neural Network hyperparameter domains as from (Head et al., 2018). Categorical options are set as specified below.

Parameter Domain

hidden layer sizes pow2int([1.0, 10.0])
alpha pow10([-5.0, -1])
batch size pow2int([5.0, 10.0])
max iter pow2int([5.0, 8.0])
learning rate init pow10([-5.0, -1])
power t [0.01, 0.99]
momentum [0.1, 0.98]
beta 1 [0.1, 0.98]
beta 2 [0.1, 0.9999999]
learning rate constant
solver adam
activation relu
nesterovs momentum False

Table 4. Active learning task of ’robot pushing’ as from (Kaelbling & Lozano-Pérez, 2017). Code is available at
https://github.com/zi-w/Max-value-Entropy-Search. All instances of np.random.normal(0, 0.01) was replaced by np.random.normal(0,
1e-6) in push world.py to make the function virtually noise-free. The goal location was set to a fixed location for reproducibility, as
specified below.

Parameter Domain

robotx [-5, 5]
roboty [-5, 5]
θinitial [0, 2π]
simulation steps int([10., 300.])
goalx 3.0
goaly 2.0

5.3 Regret version of results

For regret version of results table, see Table 5.

5.4 Corrupted Holder Table and Corrupted Exponential

The following corruption functions in Figure 3 was used for the benchmarks Corrupted Holder Table and Corrupted
Exponential. small corruption func and large corruption func was applied to the SigOpt benchmarks (McCourt, 2016)
Holder Table 2D and Exponential 8D, respectively. The input dimensions are re-scaled to be between 0 and 1 before the
corruption is applied. The new function minimum of each function (due to the corruption) was estimated via 1e6 uniformly
drawn samples in the domains.
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import numpy as np
from scipy import signal

def corruption(x, a0, a1, a2, a3):
assert np.all(x >= 0)
assert np.all(x <= 1)

a = 0.0 + 1.0 * signal.square(4 * 2 * np.pi * x)
b = 0.5 + 0.5 * signal.square(4 * 2 * np.pi * x)
base = a * b

p0 = 0.3 * np.pi
p1 = 0
p2 = np.pi
p3 = 0.5 * np.pi

s0 = a0 * signal.sawtooth(p0 + 15 * 2 * np.pi * x)
s1 = a1 * signal.sawtooth(p1 + 10 * 2 * np.pi * x)
s2 = a2 * signal.sawtooth(p2 + 30 * 2 * np.pi * x)
s3 = a3 * signal.sawtooth(p3 + 40 * 2 * np.pi * x)
return base * (s0 + s1 + s2 + s3)

def corrupt(func, bounds, f_min, f_max, corruption_func):
f_range = f_max - f_min
lower_limits = np.array([b[0] for b in bounds])
upper_limits = np.array([b[1] for b in bounds])
ranges = upper_limits - lower_limits
def normalise(v):

return (v - lower_limits) / ranges
return lambda v:
func(v) + \
f_range * np.max([corruption_func(v_dim_norm) for v_dim_norm in normalise(v)])

small_corruption_func = lambda x: corruption(x, a0=-0.03, a1=0.05, a2=0.08, a3=0.03)
large_corruption_func = lambda x: corruption(x, a0=-0.03, a1=0.20, a2=0.16, a3=0.06)

Figure 3. Corruption functions in Python.

Table 5. Regret for various test functions; lower is better. The upper table shows the results after 50 objective function evaluations and the
lower table after 100 evaluations. Due to computational cost, Warped GP results are only reported after 50 evaluations.

Benchmark Evals Dim Func Max Func Min Initial regret GP Warped GP Homosced GP Heterosced GP LGP

Hartmann 50 6 0.00 -3.32 2.764 ± 0.490 0.117 ± 0.109 1.360 ± 0.783 0.343 ± 0.575 0.074 ± 0.081 0.190 ± 0.436
Griewank 50 2 3.19 0.00 1.151 ± 0.441 0.104 ± 0.230 0.379 ± 0.179 0.220 ± 0.150 0.105 ± 0.101 0.102 ± 0.081
Shubert 50 2 210.45 -186.73 183.2 ± 9.820 114.6 ± 51.93 129.3 ± 31.52 113.1 ± 47.77 95.70 ± 60.38 75.34 ± 66.56
Ackley [−10, 30]d 50 2 22.27 0.00 16.45 ± 4.202 1.391 ± 2.101 12.79 ± 3.550 1.641 ± 0.723 1.282 ± 2.481 1.093 ± 0.741
Cross In Tray 50 2 -0.26 -2.06 0.393 ± 0.158 0.018 ± 0.052 0.195 ± 0.123 0.026 ± 0.032 0.009 ± 0.038 0.026 ± 0.062
Holder Table 50 2 0.00 -19.21 15.51 ± 2.571 0.983 ± 1.329 1.433 ± 0.687 1.451 ± 1.182 1.081 ± 1.376 0.112 ± 0.398
Corrupted Holder Table 50 2 3.46 -20.99 18.37 ± 2.444 4.816 ± 4.671 3.508 ± 0.983 3.138 ± 1.123 5.157 ± 5.433 1.836 ± 0.690

Branin01 100 2 308.13 0.40 6.975 ± 5.110 0.001 ± 0.000 0.001 ± 0.001 0.001 ± 0.001 0.000 ± 0.000
Branin02 100 2 506.98 5.56 27.666 ± 28.450 0.253 ± 0.500 0.736 ± 0.690 0.253 ± 0.501 0.380 ± 0.572
Beale 100 2 181853.61 0.00 1152.964 ± 3639.596 0.288 ± 0.302 0.259 ± 0.210 0.241 ± 0.253 0.250 ± 0.251
Hartmann 100 6 0.00 -3.32 2.764 ± 0.490 0.038 ± 0.082 0.162 ± 0.471 0.044 ± 0.066 0.058 ± 0.100
Griewank 100 2 3.19 0.00 1.151 ± 0.441 0.028 ± 0.020 0.099 ± 0.054 0.032 ± 0.023 0.055 ± 0.056
Levy 100 2 454.13 0.00 58.26 ± 37.30 0.289 ± 1.018 0.026 ± 0.028 0.205 ± 0.727 0.034 ± 0.025
Shubert [−10, 10]d 100 2 210.45 -186.73 183.2 ± 9.820 90.09 ± 56.44 88.72 ± 50.59 60.34 ± 58.95 22.70 ± 45.82
Deflected Corrugated Spring 100 10 25.87 -1.00 5.919 ± 1.364 3.921 ± 1.848 0.944 ± 0.574 3.411 ± 1.243 1.797 ± 0.880
Weierstrass 100 8 144.00 112.00 12.90 ± 1.430 5.070 ± 0.997 3.790 ± 0.767 5.401 ± 1.320 4.798 ± 1.436
Cross In Tray 100 2 -0.26 -2.06 0.393 ± 0.158 0.000 ± 0.000 0.001 ± 0.002 0.000 ± 0.000 0.000 ± 0.000
Holder Table 100 2 0.00 -19.21 15.51 ± 2.571 0.459 ± 1.048 0.495 ± 1.079 0.591 ± 1.176 0.005 ± 0.006
Ackley [−10, 30]d 100 2 22.27 0.00 16.45 ± 4.202 0.480 ± 0.720 1.318 ± 0.556 0.347 ± 0.597 0.395 ± 0.332
Ackley [−10, 30]d 100 6 22.27 0.00 19.89 ± 0.809 10.92 ± 6.656 4.191 ± 0.751 11.20 ± 6.438 5.819 ± 5.449
Corrupted Holder Table 100 2 3.46 -20.99 18.37 ± 2.444 2.921 ± 3.728 2.034 ± 0.781 3.396 ± 3.798 1.474 ± 0.342
Corrupted Exponential 100 8 -0.04 -0.99 0.391 ± 0.101 0.172 ± 0.109 0.057 ± 0.016 0.165 ± 0.087 0.074 ± 0.038

HPO: NN Boston 100 9 5.00 -0.85 0.886 ± 1.199 0.023 ± 0.012 0.023 ± 0.009 0.019 ± 0.013 0.021 ± 0.010
HPO: NN Climate Model Crashes 100 9 5.00 0.11 0.161 ± 0.099 0.047 ± 0.017 0.035 ± 0.017 0.040 ± 0.021 0.039 ± 0.017
Active learning: Robot Pushing 100 4 unknown 0.00 3.783 ± 1.842 0.468 ± 0.729 0.829 ± 0.673 0.369 ± 0.537 0.193 ± 0.128

Kaelbling, L. P. and Lozano-Pérez, T. Learning composable models of parameterized skills. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pp. 886–893. IEEE, 2017.

McCourt, M. Optimization test functions. https://github.com/sigopt/evalset, 2016.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and de Freitas, N. Taking the Human Out of the Loop: A Review of
Bayesian Optimization. 104(1):148–175, 2016. ISSN 0018-9219. doi: 10.1109/JPROC.2015.2494218.



Supplementary material

Snoek, J., Larochelle, H., and Adams, R. P. Practical bayesian optimization of machine learning algorithms. In Advances in
neural information processing systems, pp. 2951–2959, 2012a.

Snoek, J., Larochelle, H., and Adams, R. P. Practical Bayesian Optimization of Machine Learning Algorithms. In Pereira,
F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q. (eds.), Advances in Neural Information Processing Systems 25, pp.
2951–2959. Curran Associates, Inc., 2012b.

Snoek, J., Swersky, K., Zemel, R., and Adams, R. Input warping for bayesian optimization of non-stationary functions. In
International Conference on Machine Learning, pp. 1674–1682, 2014.


