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Abstract
We present a novel approach to Bayesian infer-
ence and general Bayesian computation that is
defined through a sequential decision loop. Our
method defines a recursive partitioning of the sam-
ple space. It neither relies on gradients nor re-
quires any problem-specific tuning, and is asymp-
totically exact for any density function with a
bounded domain. The output is an approxima-
tion to the whole density function including the
normalisation constant, via partitions organised
in efficient data structures. Such approximations
may be used for evidence estimation or fast pos-
terior sampling, but also as building blocks to
treat a larger class of estimation problems. The
algorithm shows competitive performance to re-
cent state-of-the-art methods on synthetic and real-
world problems including parameter inference for
gravitational-wave physics.

1. Introduction
Bayesian methods require the computation of posterior den-
sities, expectations, and model evidence. In all but the sim-
plest conjugate models, these calculations are intractable
and require numerical approximations to be made. In many
application areas, multiple computational tasks are carried
out on the same distribution or model of interest. Using
traditional methods, this typically involves specialised algo-
rithms and expertise for different tasks, reducing ease-of-use
of the overall methodology, and there is often a need for
many expensive computations. The individual computations
can have low utilisation of past results, increasing the total
computational burden and slowing down experimentation.

The shared object on which the methods and computations
operate is a density function, typically being an unnor-
malised joint distribution of parameters and fixed data. What
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is preventing tractable computations is that the density func-
tion does not have an amenable functional form. An ideal
functional form would allow us properties that are typi-
cally only associated with specific families of parametric
distributions, such as fast proportional sampling, tractable
expectations of functions, deriving conditional and marginal
densities, and compute quantities like divergences. There
are families of methods dedicated to approximating the
density function with a function of such form. However,
these methods either assume specific original functional
forms, require known gradients, or can be prohibitively ex-
pensive. This is today a challenge often even for problems
which are moderate in the number of random variables 1,
as many applications areas entail joint distributions with
difficult properties. Such areas include the physical sci-
ences, hyperparameter inference, and active learning, such
as approximating distributions of inputs to functions.

In this work, we construct approximations which are
amenable for tractable computation. The approximation
is a tree structure which can be computed ahead of time, and
from which we can produce piecewise constant approxima-
tions amenable for respective task. We present an efficient
algorithm to produce such trees, driving a recursive partition-
ing of the domain. The algorithm is designed for black-box
settings, does not rely on gradients nor a known form, and
addresses challenges such as multi-modality, discontinuous
structures, and zero density regions. Our approach is asymp-
totically exact and has no sensitive free parameters; this
leads to an algorithm that accommodates general density
functions of moderate dimension, and that is easy to use.
The method defines a sequential decision loop sampling
the integrand, prioritising regions of high probability mass
within a recursive refinement of the approximation. The
decision loop has similar algorithmic efficiency as MCMC
and nested sampling, with a time complexity allowing for
sub-millisecond decision times and scalability to a large
number of observations to obtain sufficient precision. It is
competitive to recent state-of-the-art implementations of
these methods for their individually supported tasks, whilst
in contrast to these methods produce a density function ap-
proximation defined over the whole domain, useful for many
down-stream tasks beyond efficient sampling and evidence
estimation. This algorithm we refer to as DEnsity Function

1Such as constituting up to around ten random variables.
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Estimation using Recursive partitioning or DEFER.

Figure 1. Partitions produced using DEFER, after 53, 303, 2 101,
and 100 003 density function evaluations, respectively.

2. Background
The need for substituting continuous distributions or pro-
cesses with approximations exists in various forms in lit-
erature. For optimisation problems in economics (Tanaka
& Toda, 2013; 2015; Farmer & Toda, 2017), and engineer-
ing (Nguyen-Hong et al., 2018; Ai et al., 2013) discrete
approximations are often used, but these methods generally
rely of knowing the parametric form (Miller III & Rice,
1983; DeVuyst & Preckel, 2007). Variational Inference
(VI) (Blei et al., 2016; Hoffman et al., 2013) seeks a distri-
bution approximation from a choice of variational family.
However, VI typically requires differentiability and known
gradients, which is not met in our setting. Acerbi (2018)
combined VI with Bayesian Quadrature (O’Hagan, 1991)
and a Gaussian Process (GP) surrogate to fit the variational
distribution of an explicitly unknown distribution, and Jar-
venpaa et al. (2020) uses a GP surrogate for Approximate
Bayesian Computation (ABC). These methods are useful
for scenarios where the unknown density function is sig-
nificantly more expensive to evaluate than the predictive
distribution of the GP surrogate, but this is typically not
the case in the settings we address. To put these costs in
perspective, evaluating the density function in the typical
inference scenarios we address comes at a cost in the range
of milliseconds, whilst the method in (Acerbi, 2018) takes
around a second to decide where to evaluate already after a
few evaluations. Furthermore, the time complexity of that
method is O(N4), whilst we need a near-linear algorithm
scaling to many thousands or millions of evaluations. Our
method is, e.g., suited for the inner-loop of such methods,
such as inference of the hyperparameters of the Gaussian
Process model these methods use.

Figure 2. Shown on the left is an illustrative comparison to using
standard rejection sampling for parameter inference on a Gaussian
distribution in 5D, with a true scale parameter of 1/20 and 1/100 of
the domain sides, corresponding to small and large marker sizes,
respectively. The rejection methods use proposals drawn uniformly
or in a Sobol sequence (Quasi-Monte Carlo), respectively. Shown
on the right is a comparison to using a uniform grid for evidence
estimation on the Student’s t-distribution in 2D, 4D, 6D, and 10D
corresponding to the markers of increasing size. The true scale
parameter corresponds to 1/100 of the domain sides. Both experi-
ments were run 20 times with uniformly sampled true means, and
the Student’s t-distribution has 2.5 + (D/2) degrees of freedom.

Monte Carlo (MC) methods approximate expectations of
functions using a finite collection of samples drawn in pro-
portion to a distribution. But the samples collected, for
example via Markov Chain Monte Carlo (Geyer, 1992),
only constitute a density function approximation 2 at the
collected samples, and thus neither provide (probability)
mass integral estimates, nor allow for density queries over
the whole sample space Ω as we require.

One of our method’s main requirements is flexibility and
the ability to handle unknown distributions with little to no
specification. This requirement we can fulfil through having
the property of asymptotic exactness. In other words, that
the approximation tends towards the true distribution and
that given enough computational budget, sufficient preci-
sion may be achieved. This is to circumvent the need to
specify distribution-specific details upon the usage of the
method; which would be difficult, as the (true) distribution is
assumed explicitly unknown and complicated, in that it may
have strong correlations, be discontinuous, multi-modal, or
have zero density regions of complex shapes.

To achieve asymptotic exactness, we take inspiration from
quadrature, which is a classic approach to estimating an in-
tegral numerically over a bounded domain. These methods
partition the domain and convert the integral into a weighted
summation of integrands at each partition. By creating a
partitioning of the full domain, quadrature methods provide
asymptotic guarantees by design. Furthermore, quadrature
methods can be robust to the characteristics of the function

2If the associated density values are saved.
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Figure 3. Illustration of partition division. (a) The domain Ω is divided according to a partitioning Π composed of partitions {Ωi} with
corresponding centroids {θi}. (b) Locally linear structure: High mass partitions H = {θ2,θ4} define a linear subspace Φlinear used to
find candidates for division (e.g. θ1). (c) Local neighbourhoods: High mass partitions H = {θ5,θ10} define neighbourhood D-balls
Φballs used to find candidates for division (e.g. θ6,θ9, . . .). The true density is shown in blue.

surface, such as discontinuities and zero density regions,
as it is the domain partitioning that drives the asymptotic
behaviour. Just as quadrature is asymptotically exact in
the limit of decreasing size of the largest partition, we can
similarly achieve this guarantee by ensuring the iterative
partitioning algorithm will eventually divide all current par-
titions. The downside of the characteristic that provides the
asymptotic guarantee is the curse of dimensionality (Gan-
der & Gautschi, 2000; Smolyak, 1963; Gerstner & Griebel,
1998; Hewitt & Hoeting, 2019), where the number of parti-
tions in a grid of fixed resolution grows exponentially with
the number of dimensions. We will design the algorithm
with this in mind, prioritising regions to refine into finer
partitions iteratively. For a visual depiction of a partitioning,
see Figure 1. This is especially important as the distribu-
tion’s typical set may be concentrated to tiny regions, which
would make an equidistant grid computationally infeasi-
ble. We illustrate this in Figure 2. In the figure, we also
demonstrate the common lack of efficiency of using stan-
dard rejection sampling for posterior sampling, a method
that otherwise provides much flexibility. The efficiency
problem arises in typical realistic scenarios, where the like-
lihood function causes the typical set of the posterior to be
concentrated to small regions. As illustrated, uninformed
proposal distributions become infeasibly inefficient already
in low dimension (5D in the example) when the posterior’s
typical set is even just moderately small. This is simply
a consequence of the vast number of proposals needed on
average per proposal landing in the typical set (≈ 107 in the
example).

We are not the first to recognise that a tree-based parti-
tioning of the whole domain has several desired properties.
(McCool & Harwood, 1997) proposed using kd-trees to rep-
resent distributions, and (Lu et al., 2013) proposed using
partitionings in Bayesian modelling and developed a prior
distribution over partitions and a corresponding inference
method. (Li et al., 2016) developed an algorithm to con-
struct piecewise constant density function approximations
from iid samples based on discrepancy. All these methods

assume that we have samples drawn from the true distribu-
tion and wish to reconstruct the distribution. As such they
address a different problem domain, one where samples are
known a-priori. We do not have access to samples drawn
from the distribution, but are instead provided the unnor-
malised density function. In our approach, we evaluate the
density function as a part of an active sampling loop, where
at each iteration we pick locations in the sample space for
which to evaluate the density function. We will now proceed
with our methodology.

3. Methodology
Let f : Ω → R+ be an explicitly unknown, unnormalised
density function defined on a hyperrectangular sample space
Ω ⊂ RD, which can be evaluated for any θ ∈ Ω 3 . Our
goal is to construct a representation of the function that
enables the tractability of downstream tasks, such as fast,
constant-time proportional sampling, evidence estimation,
tractable expectations of functions, deriving conditional and
marginal densities, and compute quantities like divergences.
A density function implies a distribution

Pf (θ) =
f(θ)∫

θ∈Ω
f(θ)dθ

=
f(θ)

Z
, (1)

where Z constitutes the unknown normalising constant. We
will approximate both the function f and the normalising
constant Z.

Typically f is formed via a joint distribution of data D and
parameters θ, where we refer to Z as the evidence and the
distribution as the posterior. In other words,

f(θ) := p(D|θ)P(θ) = ZP(θ|D), (2)

where P(θ) and p(D|θ) denotes the prior distribution and

3In practice, a function with a complicated non-convex domain
may be treated by placing it within a hyperrectangle and assume
that f evaluates to 0 everywhere it is not defined. Distributions
with infinite support may be approximately treated if it is possible
to enclose the typical set within the bounds of the hyperrectangle.
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Ground truth slice s. PTMCMC DNS DEFER slice s. PTMCMC DNS DEFER
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Figure 4. Robustness to characteristics in the density surface. In the upper row, a surface with heavy correlations and multi-modality is
shown, and in the lower row a surface with discontinuities and a valley. The output of the methods is shown after approx. 150 (left)
and 1k (right) density evaluations for the first function, to illustrate the relative inefficiency of MCMC in capturing modes. The same is
shown after approx. 30 and 100k evaluations for the second function, to illustrate the early coarse approximation by DEFER as well as its
asymptotic exactness in contrast to DNS. As different to the other methods, DEFER outputs a function f̂ .

the likelihood function, respectively.

3.1. Representation of f̂

The combination of two data structures will represent our
approximation f̂ . Firstly, a non-overlapping partitioning
Π := {Ωi} of the domain Ω in an array, with an observed
value of f at each respective centroid θi of the correspond-
ing partition Ωi, that represents a Riemann sum over the do-
main with hyper-rectangular partitions of non-constant side
lengths as illustrated in Figure 1 and Figure 3. An estimate
of the normalisation constant over the domain or a subdo-
main is obtained by summation of the masses {Vif(θi)} of
the partitions within, where Vi is the volume of a partition
with index i. Secondly, a tree-structure in which these parti-
tions are organised, forming a search tree over volumetric
objects. Together, these data structures permit integrals to
be approximated by summation as in a quadrature rule, den-
sity queries of θ or partitions by tree search, and constant-
time sampling. Constant-time sampling will be achieved
by the following. First, sample the index of a partition in
constant-time using the alias method for categorical distri-
butions (Kronmal & Peterson Jr, 1979), and then sample
uniformly within the partition 4 . We will later demon-
strate that, given such a representation, many quantities and
constructs can be estimated within the same framework,
including conditional and marginal distributions.

3.2. Iterative construction requirements of f̂

We now consider how to obtain a sufficiently close approx-
imation to f in an efficient manner. We address this in
three ways. Firstly, we prioritise where in the domain Ω
the approximation should be refined. Secondly, we allow
for a large number of partitions. Lastly, we provide guar-

4Note that constant time sampling is only available after the
construction of the approximation, as the alias method requires lin-
ear time pre-processing. Without such pre-processing, logarithmic
time sampling is available by tree-search.

antees that the algorithm asymptotically approaches f . In
a non-overlapping space partitioning, the first requirement
translates into a decision-problem over which partitions to
divide at a given step in sequence. The second requirement
translates into making the decisions in an efficient manner,
with an algorithmic complexity that allows for fast decisions
that remain fast also for a large number of partitions. And
lastly, for the asymptotic behaviour, guaranteeing that all
partitions will eventually be divided.

4. Algorithm

Algorithm 1 DEFER

Input: General density function f defined over Ω with
unknown normalisation constant Z.
Output: Approximation f̂ , Ẑ, as specified by the pro-
duced partitioning ΠT .
Initialize t = 1 and initial partitioning Π1 = {Ω}
repeat # makes density acquisitions at each iteration
{Ωi} = to divide [ Πt]
divide each partition Ωi, each one resulting in {Ωj}
new partitions
add all sets of {Ωj} into Πt

remove the divided partitions {Ωi} from Πt

set t→ t+ 1 and update data structures
until Nt ≥ Nmax

Given the representation and requirements, we construct the
approximation through an iterative refinement procedure of
the current tree-structured domain partitioning. The algo-
rithm starts from the base case of the whole sample space
being one partition, with its density evaluated at the centre.
A subset of the existing partitions will be selected at each
iteration to be divided further, as specified by a few criteria,
which we will address later. Note that the base case will
always be divided as at least one partition will always be
divided at each iteration. When a partition is divided, it will
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result in new partitions according to a division procedure,
where each new partition will receive an associated density
by evaluating f at the partition centre, except for the centre
partition which will inherit it from the divided (parent) par-
tition. The new partitions will subsequently be incorporated
into a few data structures (and the divided partition will be
excluded), including the tree-structured partitioning, as well
as into some data structures to enable the division criteria
to be efficiently checked for all partitions in subsequent
iterations. The outline of the algorithm is shown in Algo-
rithm 1. The set of current partitions at a given iteration t
in the sequence of decisions is denoted by Πt. We define
Nt := |Πt| to be the number of partitions at iteration t. At
each iteration, we divide all partitions in Πt that meet any of
three criteria, to produce an updated set of partitions Πt+1

(referred to as to divide in Algorithm 1). Note that only
one criterion needs to be met for division of a given partition,
and multiple partitions may be divided at each iteration.

Partition division routine We will now describe the divi-
sion routine, which is carried out on a given partition after it
has been decided to be divided. A partition division entails
dividing the partition into three sub-partitions with equal
side-lengths for each divided dimension. The set of dimen-
sions to divide is the set of dimensions of maximum length
for the partition, following normalisation of the domain Ω to
a unit hyper-cube to avoid favouring dimensions spanning
a wider value range. An illustration is shown in Figure 3
(a), where the initial partition (the whole domain Ω) was
in the first iteration divided horizontally followed by ver-
tically, and in the second iteration the centre partition was
selected to be divided further, and divided horizontally. The
divide order of the dimensions is the same as the descending
order of the highest observed function value, in common
with (Jones et al., 1993). In other words, after determining
all the child partitions centroids and evaluating the density
at those locations, associate each dimension with the high-
est density value observed along that dimension and rank
the dimensions accordingly. Note that the centroid position
do not depend on the dimension divide order even though
the partition bounds do, allowing the function to be evalu-
ated before the forming of the partitions. The forming of
each new partition, with centroid θj , entails evaluating the
true density function and storing the density value f(θj)
together with the partition boundaries. Note that each parti-
tion division results in a variable number of new partitions,
depending on the number of dimensions being divided.

Search-tree To form the search-tree described in Sec-
tion 3, we store each partition Ωi together with its asso-
ciated density function observation f(θi) in a node. When
a partition is divided (see Algorithm 1), a set of child nodes
is created and stored in an array within the parent node.
Each partition (Ωi) is represented using two arrays; with the

lower and upper bounds for each dimension, respectively.
A query for the unique leaf node (and partition) that is as-
sociated with a given θ can be performed by traversing the
tree from the root. This is a consequence of the partitions
associated with child nodes of each non-leaf node being
non-overlapping, and their union being equal to the partition
of their parent.

4.1. Partition division decision criteria

We now detail the three individually sufficient criteria for
division, that we denote CR1 to CR3. For the first crite-
rion, with the aim of robustness to degeneracies in f and
to maintain an informed and efficient exploration, we will
re-interpret (Jones et al., 1993) which proposed an approach
to avoiding explicit assumptions of the Lipschitz constant in
the context of global optimisation. In (Jones et al., 1993) the
domain of the function to be optimised was iteratively split
into finer partitions, where partitions to be divided had the
maximum upper bound function value under any possible
maximum rate of change (Lipschitz constant) between zero
and infinity. We will translate and adapt this idea to our
context of mass-based prioritisation over the whole function.
To ensure the guarantee of the approximation’s asymptotic
exactness, at least one criterion will need to be eventually
fulfilled for all partitions, see Section 2. This first suffi-
cient criterion (CR1) will fulfil this. We will also derive
two complementary criteria that exploit typical density func-
tions structures, motivated for increased sample-efficiency
in handling strong correlations.

4.1.1. SUFFICIENT PARTITION DIVISION CRITERION 1

One could imagine simply dividing the partition which cur-
rently has the largest estimated mass Vkf(θk), where Vk
is the volume of the partition Ωk, and f(θk) is the associ-
ated density value evaluated at its centroid θk. However,
this would not consider that the density at the centroid θk
typically is less representative for the partition the larger
the partition is. The purpose of this criterion will be to
prioritise the division of partitions by their potential for
(true) mass. An approach that may easily come to mind is
to fit a function model to the density values and partition
centroids to assess how the density function may behave
outside the evaluated centroids. However, fitting a function
model, as well as taking the function model into account,
comes at a computational cost. Even if the function model
fitting would come at constant cost per added partition with
respect to the number of partitions, which it typically does
not, considering all partitions under the model at a given
iteration would at best come at a linear cost. A linear cost
per decision would result in a quadratic time algorithm that
will not scale well to millions of partitions. Moreover, an
interpolating function model implies a function with no dis-
continuities, which we cannot assume in our setting. Instead,
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we will derive a rule that allows us to consider all partitions
and density evaluations simultaneously while carrying out
decisions in logarithmic time with respect to the number of
partitions so far. Furthermore, the rule will handle disconti-
nuities and rapidly changing surfaces and does not require
an assumption or prior of the Lipschitz constant.

Criterion The criterion (CR1) is the following. A parti-
tion Ωk will be divided if there exists any rate-of-change
constant 5 K̄ > 0 such that

Vk ·
(
f(θk) + K̄

dk
2

)
≥ Vi ·

(
f(θi) + K̄

di
2

)
, (3)

and Vk ·
(
f(θk) + K̄

dk
2

)
≥ β Ẑ

Nt + 1
, (4)

for all ∀ i ∈ [1, Nt], where Ẑ =
∑Nt
k=1 Ẑk =

∑Nt
k=1 Vk ·

f(θk) is the normalising constant of the approximation,
Vk is the volume of the partition Ωk, θk is the centroid of
the partition, and dk is the diameter of the partition dk =
supθi,θj∈Ωk

||θi − θj ||. Here, β is a positive parameter
specifying what constitutes a non-trivial amount of upper
bound mass of a partition in relation to the current estimate
of average mass; we fix β = 1 for all the experiments in
this work. Note that β only controls precision relative to
the average partition mass contribution so far, and can in
general be left at default.

The first statement (Equation 3) is true if the partition of
index k has an upper bound on its true mass greater or equal
to the upper bound of all the partitions under any choices
of K̄ > 0. The second statement (Equation 4) is true if
the partition, under the corresponding choice of K̄, has an
upper bound on the true mass that constitutes a non-trivial
amount of mass.

Implementation We check the first statement (Equa-
tion 3) using the following. After construction of a partition
Ωj , with parameters (f(θj),θj ∈ Ωi), we map it to ordi-
nate Vj · f(θj) and abscissa Vj · dj/2 in a 2D space, see
Figure 5. The criterion will be fulfilled for a partition Ωk if
and only if its corresponding coordinate is a member of the
upper-right quadrant of the convex hull (URQH) in this 2D
space.

The ordinate and abscissa of each partition is stored in a
hash map of heaps, i.e. where each entry of a hash table
maps to a heap (Williams, 1964) as its associated value.
This data structure map is used to efficiently provide access
to the maximum ordinate partition per unique abscissa at
every iteration t, which are kept sorted using the individual
heaps, allowing fast updates. These partitions are the only
ones that have corresponding coordinates that may be part

5Note that this is not an (explicit) Lipchitz constant assumption,
as we simultaneously consider all possible K̄ > 0.

Figure 5. Partitions and their associated density values are mapped
to points in a 2D space for which the only partitions that can fulfil
CR1 are also a member of the upper right quadrant of the convex
hull, shown as the red line. Moreover, the only partitions whose
points needs to be a part of the convex hull calculation are the ones
that have the highest ordinate Vj ·f(θj) (mass) per unique abscissa
(green), shown with blue rings, which significantly reduces the
needed computation.

of the URQH described, and the only ones that need to be
a part of a convex hull calculation. The number of unique
abscissas we will demonstrate is small and near constant
with respect to the number of partitions.

The second statement (Equation 4) is checked by consid-
ering the upper bound of the K̄ that a given partition Ωk
used to fulfil the first statement. This would be the K̄ that,
were it any larger, would result in the right hand neigh-
bour on the URQH having a larger upper bound of the
mass Vi+1 · (f(θi+1) + K̄ di+1

2 ) > Vi · (f(θi+1) + K̄ di
2 ),

which would violate Equation 3. In other words, we have
K̄upper
i := 2Vi+1f(θi+1)−Vif(θi)

Vidi−Vi+1di+1
, except for the right-most

member which will have positively infinite upper-bound
on K̄. As such, statement two is fulfilled if Vi · (f(θi) +

K̄upper
i

di
2 ) ≥ β Ẑ

Nt+1 is true.

Fulfilment of asymptotic guarantee As of Equation 3
and 4, it is clear that the right-most member of URQH
(RM-URQH) will always be divided as its upper bound
is positively infinite. Note that this is true for any (finite)
choice of β. Furthermore, as the RM-URQH will always be
among the partitions with the largest diameter, the largest
diameter will asymptotically tend to zero. As a consequence,
all partitions will eventually be divided, which in turn guar-
antees asymptotic convergence to f as of a partitioning of
the whole domain constitutes a Riemann sum.
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4.1.2. EXPLOITING CHARACTERISTICS OF DENSITY
FUNCTIONS (CR2 AND CR3)

We now add search behaviour to exploit desirable heuris-
tics targeting both locally linear correlations and spatial
proximity in Ω.

Set of high mass partitions We define H as a set of high
(relative) mass partitions at the current iteration. A partition
Ωj will be a member of this set when

Ẑj ≥ ẐM and Ẑj ≥ α
Ẑ

Nt + 1
(5)

subject to the constraint that 1 < |H| ≤M . The value ẐM
is defined to be the mass of the partition of the M th highest
mass, Ẑ∗ = V∗ · f(θ∗), and α is a positive parameter speci-
fying what constitutes a large (outlier) mass ratio relative
to the average partition. In practice, we set M = min(5, D)
and fix α = 20 for all experiments in this work 6.

CR2: Sufficient partition division criterion 2 See Fig-
ure 3 for intuition. Existing partitions with a high estimated
mass, relative to other partitions, are grouped in the set H
and denoted with red centroids. Were we to assume (at least
some) linear correlation between the centroids inH , we may
also assume that high mass is more likely to concentrate
along an affine subspace defined by linear combinations of
the centroids denoted Φlinear, illustrated by the maroon line.
Partitions intersecting this (|H| − 1)-dimensional hyper-
plane are candidates for division.

Given the setH of high mass partitions, we construct a finite
set of representer points Rlinear based on the affine subspace
constructed from linear combinations of the centroids of
the partitions in H that we denote Φlinear. We address the
representer points in the supplement. A partition Ωk will
be divided if any point r ∈ Rlinear falls within the partition.
That is, the set {r | r ∈ Ωk, r ∈ Rlinear} is not empty.

CR3: Sufficient partition division criterion 3 We will
now address the neighbourhoods of the H partitions, illus-
trated in Figure 3. The figure shows that we consider spatial
proximity to elements of H through sets of D-dimensional
balls Φballs centred on elements of H . We define Φballs as
the union of the interiors of D-dimensional balls centred
at respective centroid of the partitions H . The diameter
of a given D-ball corresponding to partition Ωj ∈ H is
φdh, where φ is constrained to be φ > 1 to guarantee that

6This setting we found to work well empirically, but we did not
observe a large sensitivity to the choice of α. We also observed
that Ẑj is typically either similar to the average (as of CR1 aiming
to keep true masses roughly equal), or very much larger than the
average. Thus α = 20 is mainly set to not trigger the rule when
CR1 already manages to prioritise among the partitions effectively.

positions outside of Ωj exists in all directions from θj . A
given φ leads to a volume ratio ν of Ωj relative to the ball
as ν = Vj ·Γ(D/2+1)/(

√
π
φdj
2 )D. In practice we fix φ = 1.2 in

all experiments in this work, which we found works well
empirically with little to no benefit of targeted tuning.

We take the set H of high mass partitions and construct a
discrete set Rballs of additional representer points based on
spatial proximity to the centroids in H , denoted Φballs, and
check the condition analogously to CR2.

Summary We have now addressed the criteria CR1 to
CR3, describing the full algorithm Algorithm 1. The com-
bined time complexity of a step t is O(logNt + U logU),
where U is the number of unique abscissas (see Sec-
tion 4.1.1). For an average number of steps proportional
to NT this results in a total average time complexity of the
algorithm as O(NT (logNT + Ū log Ū)). The space com-
plexity (including storage of partitions) of the algorithm is
linear, i.e. remains proportional to the number of observa-
tions. See the supplement for the analysis. We will show
empirically that Ū is sufficiently small, and close to constant
with respect to NT , leading to a fast and scalable algorithm.

5. Experiments
As discussed in Section 1, the focus of this work is to pro-
duce approximations to density functions with support over
the whole sample space, which in turn can be used for a
number of down-stream tasks. However, it is crucial that
the presented algorithm produces approximations that have
good quality whilst being computationally efficient. We
will begin this section by assessing this using comparison to
modern approximate inference methods, and we will later
provide examples of the larger set of down-stream tasks
we may use the new method for. For an ablation study of
criterion (CR) 1 to 3, and further setup or problem details,
see the supplement.

We choose dynamic nested sampling (DNS) (Higson et al.,
2019), slice sampling (Neal, 2003), and parallel-tempering
MCMC (PTMCMC) (Ellis & van Haasteren, 2017) as the
baselines because they are easy-to-use or able to handle
multi-modality and work in the absence of gradient informa-
tion. As of the capability of DNS to also estimate evidence,
and to be robust to multi-modal and degenerate posteriors
with relatively little tuning, it has the largest overlap in fea-
tures with DEFER whilst being a recent and strong baseline.
We will therefore make more elaborate comparisons with
this method. Note, however, that DNS does not support
proxy density queries, nor other still missing features to
be addressed later. PTMCMC and slice sampling neither
support mass integration nor proxy density queries (see Sec-
tion 2), but is compared with when applicable for reference.
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Figure 6. Upper row: Median absolute error of logZ. Lower row: Median absolute error of the entropy H(θ). For both metrics, shaded
areas are the 95% CI of the median.

Figure 7. Parameter estimation for gravitational-wave physics. Shown are histograms of
the two-dimensional marginals of a 6D parameter inference problem (Ashton et al., 2019),
with samples produced after 5M density function evaluations. Upper row: from the DEFER
approximation. Second row: using PTMCMC. Bottom row: using DNS.

Figure 8. Time-series forecasting using
Gaussian Processes with the Spectral
Mixture kernel. The data is shown in
black, and posterior GP samples in blue.

5.1. Approximation quality and sample-efficiency

We first test the robustness of the inference methods
against challenging properties (see Figure 4) including multi-
modality, strong correlations, and discontinuities, on low
dimensional examples that are easy to visualize. We illus-
trate the asymptotic guarantees of DEFER in the presence
of such properties in the density surface. We also note its
sample-efficiency in representing all modes when compared
to MCMC, and in capturing detail when compared to both
DNS and the MCMC methods. In one of the shown ex-
amples DNS fail to recover the ground truth, which may
be related to the algorithm’s determination of likelihood
contours (Higson et al., 2019).

We compare with DNS quantitatively both for evidence and
parameter estimation. For evidence estimation, we measure
the median absolute error in log evidence (or logZ) over
20 runs with various budgets. For parameter estimation, we
measure the error in estimated differential entropy, due to
lack of summary statistics for multi-modal distributions. Re-
sults for a few functions with various challenging character-
istics are shown in Figure 6, such as very small or elongated
typical sets (see supplement for the functions). We remind
the reader that although the surface of the approximation

always tends towards the true surface, integral estimates
can oscillate slightly as local overestimations and underesti-
mations can cancel out to some degree. DEFER is able to
match and typically significantly surpass the performance
of DNS. Especially in getting close to the solution already
at low NT budgets, sometimes needing order of magnitudes
fewer function evaluations, but it also performs better using
the higher NT budgets. The gaps between the methods are
noticeably larger for estimating differential entropy. Esti-
mation of entropy is more sensitive to the matching of the
shape of a distribution, and not only its integral. On Canoe,
DNS completely misses the concentrated mass, but DEFER
finds it after 100k evaluations, which leads to a sharp drop
in the error of both evidence and differential entropy.

5.2. Real-world density sufaces

Synthetic distributions like the ones addressed are conve-
nient to use for assessment as they have known properties.
However, it is important to confirm that DEFER can be ap-
plied to real-world distributions and density functions. To
do this, we will apply DEFER on a parameter estimation
task from gravitional-wave (GW) physics research (Abbott
et al., 2019; Collaboration et al., 2020), and a hyperparame-
ter inference task from (Wilson & Adams, 2013).
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Figure 9. Input distributions. Shown in pink are function (f ) sam-
ples from posterior Gaussian Processes, with hyperparameters
θ ancestrally sampled from the posterior P(θ|D). P(x′) rep-
resent the distribution of the input which generated y′, where
y′ := f(x′) and y′ ∼ P(y′). DEFER makes it possible to
derive an approximation to this input distribution by a combi-
nation of capabilities. The free-form approximation produced
is flexible enough to represent the multi-modal input distribu-
tion. Furthermore, we are able to estimate the intractable integral
P(x′) ∝

∫
P(y = y′|x)P(x)P(y′)dxdy′ for each x′ ∈ X .

P(x) is here set to be uniform over the range of the figure.

In GW research physically motivated likelihood functions
and priors (Kalaghatgi et al., 2020) are used, often without
gradients available, and the induced density surfaces are
typically complicated, multi-modal, or discontinuous. Infer-
ence on these problems is often prohibitively slow, warrant-
ing actions such as re-sampling, density re-weighting and
local density integration. DEFER outputs a density function
approximation with support for all these tasks making use
of the domain-indexed search tree over partitions. We apply
DEFER to a simulated signal example from (Ashton et al.,
2019). Figure 7 shows all the 2D marginals of a 6D problem
using the ‘IMRPhenomPv2’ waveform approximant. In-
ferred parameters are, for example, the luminosity distance,
and the spin magnitudes of binary black-holes. We note
the complicated interactions between parameters, showing
the importance of handling multi-modality and strong corre-
lations. Importantly, DEFER is able to handle the surface
well without any tuning parameters. As PTMCMC, DE-
FER asymptotically approaches the unknown ground truth
surface. See the supplement for additional GW experiments.

We apply DEFER to a Gaussian Process time-series regres-
sion model with a spectral mixture kernel (SMK) (Wilson &
Adams, 2013) to infer the posterior of hyperparameters of
the kernel, which is known to be heavily multi-modal and
complicated. With a budget of 50k function evaluations, the
negative log-likelihoods on the test data are 377.66, 365.97,
236.89 and 205.50, for slice sampling, PTMCMC, DNS
and DEFER, respectively. For predictions using DEFER,
see Figure 8. See supplement for further details and plots.

5.3. Runtime performance

In the supplement we confirm both that DEFER has a similar
algorithmic cost to the other methods and that the DEFER

has a near-constant cost per function evaluation with respect
to NT . With algorithmic cost, we refer to the cost per
’decision’ of where to evaluate the density function, which
is computed from the total (wall-clock) time of inference
minus the total function evaluation time, divided by the
number of function evaluations made. In practice, using our
implementation of DEFER and setup, the decision time per
evaluation were around 0.3 to 0.5 milliseconds also after
millions of density evaluations.

5.4. Down-stream task and application examples

We are now finished with the empirical comparisons, con-
firming the quality of the resulting approximations and the
efficiency of DEFER to construct them. Importantly, we
have treated density functions in a way that lets us be agnos-
tic to the problem giving rise to the density function. The
approximation produced is a tree from which we can pro-
duce a piecewise constant function defined over the domain
or any axis-aligned hyper-rectangular subdomain. This way
we can transform a myriad of problems involving intractable
integrals, such as density marginalisations, or deriving con-
ditional distributions, into queries of the approximation and
summation.

For example, consider the problem of estimating mutual
information I(θa;θb) = EP(θa,θb)[log P(θa,θb)

P(θa)P(θb)
]. Nor-

mally this would require a specialised algorithm, but we
may now instead estimate it by using DEFER to approxi-
mate the joint P(θa,θb), and then use the capabilities of
the approximation. Another example is to propagate uncer-
tainty, such as deriving the distribution of the input to an
uncertain function producing an uncertain output, see Fig-
ure 9. We may also apply DEFER to multiple distributions,
allowing us to estimate divergences.

We provide code, and examples for how to use DEFER for
these applications and more, at https://github.com/bodin-
e/defer.

6. Conclusion
We have presented a new approach to general Bayesian
computation and approximate inference based on recursive
partitioning. The approach is shown to be competitive to
state-of-the-art methods on black-box density functions,
with high sample-efficiency and scalability, allowing com-
plicated surfaces to be estimated with high precision. The
algorithm produces a function representation that can be
used for a diverse set of tasks beyond the computation of
evidence and sampling, and is flexible and easy to use.
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