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Abstract

We introduce Latent Gaussian Process Regression which is a
latent variable extension allowing modelling of non-stationary
multi-modal processes using GPs. The approach is built on
extending the input space of a regression problem with a latent
variable that is used to modulate the covariance function over
the training data. We show how our approach can be used
to model multi-modal and non-stationary processes. We ex-
emplify the approach on a set of synthetic data and provide
results on real data from motion capture and geostatistics.

Introduction
Gaussian processes (GPs) are probabilistic objects that can
be employed as priors to specify distributions over spaces of
functions. This provides models with principled uncertainty
specification and allows for Bayesian regularization to bal-
ance model complexity with model fit. The flexibility of GPs
stems from their non-parametric structure where the charac-
teristics of the prior is fully encapsulated in the choice of
covariance and mean function. In all but few cases, the mean
function is set to be constant leaving only the covariance
function to be chosen.

Most covariance functions are stationary which means that
there is a single structure of variations independent of loca-
tion in the input space. However, for many types of data, the
assumption of a stationary process is not suitable making
non-stationary covariances desirable. Creating such covari-
ances often leads to an explosion in the number of parameters,
effectively removing the benefit of a non-parametric model.

An additional challenge with GPs is that they are limited
to modelling a single function. Often we have data where, in
certain parts of the input space, the data has been generated
by several different functions. In such scenarios we desire a
model that switches automatically between functions allow-
ing the data to be represented by several different processes.

In this paper we present a unified framework that tackles
both these problems. It allows modelling structures, such as
non-stationary and multi-modal functions, using GPs without
an explosion in the number of parameters. Specifically, we ex-
tend any covariance function with an additional latent space
that encapsulates this structure in a non-parametric manner
leading to a single GP with a specific covariance function.

During inference, we marginalise out these latent variables
from the model using the variational approach of [19]. This

method depends on computing expectations over the covari-
ance function of the GP. This is only analytically tractable
for a subset of covariance functions, limiting the applicabil-
ity of the approach. This motivates the second contribution
of this paper. We show that these expectations can be ap-
proximated efficiently using Monte Carlo methods, yielding
otherwise intractable covariances (such as ours) tractable. It
is also beneficial compared to when the expectations need to
be analytically tractable as it allows for rapid prototyping by
removing challenging and time consuming derivations.

Background
An attractive property of Gaussian processes is that, through
very simple means, it is possible to formulate priors that are
both interpretable and expressive. Examples are covariance
functions, such as the squared exponential, which with a
single parameter encode a global smoothness structure. How-
ever, for many types of data these global assumptions are not
valid. There has been significant interest in how to describe
non-stationary covariances allowing for either changing func-
tion behaviour, as in [2], or for hetroscedastic noise, as in
[14].

In multi-task learning, covariance functions have been de-
fined that are able to model variations between output dimen-
sions such as [3]. As positive-semidefinite kernels are closed
under several different operations, there has also been work
on how to combine covariances to generate more expressive
models. In [8], the authors present an approach where a class
of additive covariances is described. In a continuation of this
work, the choice of covariance function was formulated as a
search problem [9] where a set of base covariances could be
combined using additions and multiplications. Using these
techniques it is possible to create far more expressive priors
while still retaining the benefits of the GP framework.

When moving from modelling stationary to non-stationary
covariances, the prior assumption changes from that of a
global structure to one of input dependent, local structures.
When there are multiple global and/or local trends, these may
be modelled by operations on the covariances; for example, as
being generated from a sum of globally varying processes in
[16] or as a sum of (potentially infinitely many) local experts
in [17]. However, all of these models use a single generating
mapping from input space to output space. When there are
multiple processes generating the data independently, the
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Figure 1: Factorization. In this experiment the factorizing kernel (8) is used to disambiguate two non-uniformly sampled superimposed
sinusoids. The factorizing kernel is parameterized by two components, each one a squared exponential kernel with inferred hyper parameters.
Upper plot: Synthesized data. Second plot: The component association of each observation. Third plot: Posterior predictions from each
component with a standard deviation on each side of the mean. The prediction from a standard GP is shown in green. Fourth plot: Estimated
component probabilities (10). Bottom plot: Posterior samples.

observations are still forced to be explained in terms of their
covariances with respect to all other observations based on
their position in the input space. When the underlying data
generating processes give rise to multiple modes in the output
space, at a single location in the input space, a single-process
GP model must resort to explaining the data as noise - failinlg
to capture the density of the data and failing to generalize
from it. The strength of the GP to model smooth functions is
not being utilized in this case as the covariances within each
independent partition of the observations, produced by their
respective underlying data generating process, cancel each
other out.

In [15] the authors present an approach to model over-
lapping GPs, exemplified as a method for e.g. multi-target
tracking scenarios and modelling of heteroscedasticity. In
their approach, they model data-association of the obser-
vations to independent GPs via a latent association matrix.
However, since the structure of the latent subspaces created
by the association matrix is not explicitly modelled the ap-
proach only allows modelling of structures where there is no
interdependency between groups. The method we propose in
this paper includes this approach as a special case.

The creation of more complicated covariance structures
presents a particular challenge during inference. GPs, in their
simplest form, scale cubicly with the data which has lead
to a significant amount of work on reducing this computa-
tional complexity. In [7] a factorised approach is presented
which represents the GP as a product-of-experts that allows
for massively distributed computations. However, creating a
factorised model such as this relies on making independence
assumptions that are not necessarily straight forward or are
restrictive on modelling power.

Another approach is to sparsify the GP and use a smaller
set of points, referred to as inducing points, to approximate
the full model [5]. This then presents a challenge on how
to select the inducing points. In [18] a variational approach
was presented that learns these inducing points by viewing
them as variational parameters specifying the bound. Using
the same approach, the authors showed that an extension
of the same idea applies to unsupervised learning with GPs
[19] facilitating approximative integration of the latent vari-
ables. The downside of the variational approach presented in
[18, 19] is that it requires calculations of expectations over
the covariance function. These calculations cumbersome and
sometimes intractable which limits scope of applicable co-
variance functions.

In this paper, we describe a simple extension to any co-
variance function that allows modelling of non-stationary
multi-modal behaviour. Our formulation can model both non-
stationary functions, i.e. when the behaviour of the function
is different in different parts of the input domain, and also
multi-modal functions where a single input location can be as-
sociated with several different outputs. Our approach is based
on combining any covariance function with an additional
covariance over a latent input space. Using this approach we
create a non-parametric model for non-stationary and multi-
modal data. We approximately integrate out the latent space
using the variational approach in [19]. We show empirically
that it is possible to approximate the challenging expectations
using efficient sampling. This makes our approach applicable
to any type of covariance independent of whether or not the
expectations can be computed in closed form.



Latent Gaussian Process Regression
Consider a set of N input output pairs D = {xi,yi}Ni=1
generated from a non-stationary process yi = g(xi) + ε. We
can describe this function as an expansion of processes,

yi =
∑
j

α(j)(xi)f
(j)(xi) + ε (1)

where f (j) is modelled by a GP. The functions α(j)(xi) mod-
ulate the base functions f (j) and encode non-stationary multi-
modal behaviour by smoothly segmenting the different func-
tions over the training data. Modelling a sum of functions
as a GP is straight forward so the main challenge is how to
parametrise α(i)(xi). The approach that we take in this paper
is to extend the input domain with a latent variable x(c), such
that we have

yi =
∑
j

f (j)(xi,x
(c)
i ) + ε. (2)

Now, rather than directly modulating the output of the func-
tion, the latent variable can be used to modulate the covari-
ance function in a non-parametric manner. This allows for
modelling of non-functions by differentiating between sev-
eral outputs at the same input location x by altering x(c).
This leads to the following latent regression model,

p(Y,F,X(c)|X) =

p(Y|F) p(F|X,X(c)) p(X(c)),
(3)

where p(F|X,X(c)) is a GP prior over additive functions. By
marginalising out the latent variables X(c) and the GP prior
we can recover the standard marginalised likelihood for GP
regression,

p(Y|X) =∫
p(Y|F) p(F|X,X(c)) p(X(c)) dF dX(c).

(4)

An intuition behind this approach is to think of the marginali-
sation as a projection, where multiple single-modal processes
over the extended input space becomes multi-modal when
projected onto the subspace of the original data. We will
now describe how we achieve this by using a simple class
of covariance functions that we will refer to as juxtaposition
kernels.

Juxtaposition Covariance
In order to achieve the desired characteristics described
above, we will study covariances that are defined as sums of
products of different covariance functions evaluated in both
the original and the extended input space as,

kjuxta(xi,xj) =

L∑
l=0

wl(x
(l)
i ,x

(l)
j ) kl(xi,xj), (5)

where wl(·, ·) is a kernel function over latent inputs X(l),
a subset of X(c), and kl(·, ·) is a kernel function over the
observed inputs X. This can be viewed as a GP-prior consist-
ing of a weighted sum of L different kernels kl(·, ·) where

wl(x
(l)
i ,x

(l)
j ) describes the influence of kl(·, ·) for the input

pair xi and xj . In this paper we will evaluate a special case
of this kernel that encourages a factorised representation such
that the covariance of each pair of observed data points is
modelled by either a single kernel function kl(·, ·) or consid-
ered independent. This is achieved by using a linear kernel
over the latent space,

wl(x
(l)
i ,x

(l)
j ) = x

(l)
i

T
x

(l)
j , (6)

and constraining the latent locations to reside in the cor-
ners of a simplex in the unified latent space X(c) such that
||x(c)

i ||1 = 1,∀i. In this special case, the compound kernel
(5) can be interpreted as a continuous convex association
of each observation to a respective component kernel. To
achieve this, a transformation is deployed as,

ϕ(x(l)) =
x(l)α∑L
l′=0 x

(l′)α
, (7)

where α ∈ R encodes the strength of the discritisation. Since
wl is linear and x(l) is constrained to a simplex it is sufficient
for it to be one-dimensional, denoted x(l). To remove effects
of initialisation, we use a simple annealing scheme to set α
starting with a small value that increases each iteration of
the optimisation. The motivation behind this is that with a
small value, the associations can easily be altered while it is
associated with a significantly higher “cost” for large alphas.
This yields a factorising variant of the juxtaposition kernel,
summarized as,

kfactorising(xi,xj) =

L∑
l=0

ϕ
(
x

(l)
i

)
ϕ
(
x

(l)
j

)
kl(xi,xj). (8)

Using the factorisation above we aim to address the same
problem formulation as in [15] however our method is ca-
pable of generalising to any structures over the latent space
which can be encoded using different latent space priors and
is not limited to the linear kernel as explained above. Fur-
ther, by removing the transformation Eq. 7 we can allow
for continous mixtures of processes rather than a discretely
factorised.

Predictive inference for novel input locations can be done
through the posterior of the model. However, during pre-
diction the latent locations are not known and need to be
marginalised from the model,

p(y∗|x∗,Y,X) ≈
L∑
l=0

∫
p(y∗|x∗,Y,X,x

(l)
∗ )p(x

(l)
∗ |x∗,Y,X)dx(l)

∗ .

(9)

When the latent locations are confined to lie on the corners
of a simplex the integral in Eq. 9 reduces to a sum over
those corners. This means that the posterior becomes a Gaus-
sian mixture where the distribution over the latent locations
p(x

(l)
∗ |x∗,Y,X) can be interpreted as mixture coefficients.

This distribution is not analytically tractable hence we pro-
ceed with an assumption. The predictive uncertainty of each
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Figure 2: Disambiguating motion. In this experiment the factorizing kernel (8) is used to disambiguate joint positions in
motion data. The character is walking through a room twice; once starting with the left leg and once starting with the right
leg. Thus, the joint locations for the legs are ambiguous at each step, causing a ’single-process’ GP to predict the mean of
the two legs. The presented kernel successfully disambiguates the legs and thus preserves their motions. The training data
X ∈ R718×54,Y ∈ R718×60 is 718 frames of 18 joints (chest, shoulders, arms and hands) as input and 20 joints (legs, spine
and head) as output in 3D-space. Note that some of the joints are superimposed for this particular skeleton. The same squared
exponential kernel with inferred lengthscale was used to parameterize the factorizing kernel as two kernel components. The upper
figure shows the predicted joint locations (in red) at the input joint locations (in blue) for the character at two frames corresponding
to consecutive steps using a single-process GP and using the factorizing kernel for the two components, respectively. The lower
figure shows the predicted height location for the left heel given a current length-wise location across the room for the left hand,
with the single-process GP in green and the two factorized components in red. The black dots in the lower figure corresponds to
training data and the vertical lines mark the length-wise location for the two frames in the upper figure. The motion sequence
is subject 35 sequence 1 from CMU Graphics Lab Motion Capture Database [11], with a duplicate of flipped leg motions
concatenated with the original.

component is comparable. Therefore an expression of the
relative certainty can be recovered given a coordinate in the
input space,

ρl(x∗) =

∑L
l′=0 σl′(x∗)

σl(x∗)

p̂(x
(l)
∗ = 1|x∗,Y,X) =

ρl(x∗)∑L
l′=0 ρl′(x∗)

,

(10)

where σl(x∗) is the square root of the predictive variance of
the model for component l. This means that outputs can then
be generated from the model at any given input location by
first sampling a component according to the probabilities in
(10) and then sampling from the drawn component. Exam-
ples of samples and p̂(x(l)

∗ = 1|x∗,Y,X) are provided in
Figures 1, 4 and 5.

Variational Gaussian Process Latent Variable
Model
The GP-LVM framework used throughout this paper, intro-
duced in [6], deploys auxiliary inducing variables as a mean
of marginalizing out the input. For our model the input is
X and X(c), which we jointly denote X(s). The objective
function is specified as a lower bound on the data evidence.
In evaluating the lower bound, the following expectations,

referred to as sufficient statistics, need to be evaluated:

ξ = 〈Tr(Kff) 〉q(X(s))

Ψ = 〈Kfu 〉q(X(s))

Φ = 〈KufKfu 〉q(X(s)) ,

(11)

where q(X(s)) ∼ N (µ,S) and µ and S are variational pa-
rameters. These expectations are only analytically tractable
for some convariance kernels, e.g. the linear and the squared
exponential. Thus, the variational framework remains limited
to the class of kernels where these expectations are tractable,
significantly suppressing its modelling power. Critically, the
class of kernels where these expectations are analytically
tractable does not include our juxtaposition kernel.

Stochastic Approximations of Expectations
For many kernels, including ours, evaluating these expecta-
tions is not tractable; to make progress, we will proceed with
a Monte Carlo approach. Besides enabling the variational
framework to be used with a vastly larger set of kernels, it
is easy to implement, computationally fast and, as we will
show, capable of yielding virtually equivalent lower bounds.
Below we provide an intuition for why this is.

Within the Variational GP-LVM framework [19, 6], the
form of the approximate posterior over the latent space
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Figure 3: Comparison of the log lower bounds obtained using Monte Carlo sampling relative to the analytical expectation throughout 1000
iterations for two data sets. Sampling using 1, 10, 50, 250 and 500 samples per iteration are represented by red, green, blue, purple and orange
respectively. The exact and the approximated log lower bounds have been normalized with respect to the exact starting and final log lower
bound. Left: x ∈ R1, Y ∈ R100×50 is a toy data set comprising 50 draws from a GP with a squared exponential kernel. Right: x ∈ R40,
Y ∈ R46×2048 is a data set of font splines used in [4].

q(X(s)) is selected to be a known parametric distribution
(Gaussian) and each observation’s input location is parame-
terized with an egocentric, independent Gaussian for every
input dimension. The expectation approximation accuracy
over each entry (i, j) in X(s) is thus independent of dimen-
sionality. In addition the expectations of ξ and Φ are aggre-
gates over X(s), which further reduces the approximation
error. Further, when used as part of an iterative optimization,
each expectation approximation error over the course of the
optimization procedure is independent. Thus the approxima-
tion error of the expectations results in a ‘noisy’ gradient
which is correct on average (cf. stochastic gradient descent).
In summary, the empirical means can be expressed as,

ξ ≈ 1

T

T−1∑
t=0

Tr
(
K

(t)
ff

)
Ψ ≈ 1

T

T−1∑
t=0

K
(t)
fu

Φ ≈ 1

T

T−1∑
t=0

K
(t)
uf K

(t)
fu

(12)

where K
(t)
ff and K

(t)
fu are obtained using X

(s)(t)
i,j ∼

N (µi,j , Si,j).

Implementation We implement the stochastic approxima-
tion using the ‘reparameterization trick’ as discussed in [12]
and [13] to ensure we obtain low variance estimates for the
expectations. The entire architecture is implemented using
the Tensorflow framework [1]. This allows us to propagate
gradients through the sampling procedure as if they were
analytically calculated.

We will now proceed with the experiments where we pro-
vide empirical evidence that the number of samples T can be
small enough to be practical to compute while still obtaining
accurate enough approximations of the expectations.

Experiments
Here, we demonstrate the suitability of Monte Carlo methods
for approximating the expectations of (11) as in (12). We
show this with respect to the effect on the resulting lower
bound. In all experiments in this section the squared exponen-
tial kernel is used to provide a comparison to the analytical
expectation for a common case. Throughout the rest of the
paper, the juxtaposition kernel (8) used is analytically in-
tractable and we rely entirely on the sampling method.

Lower Bound In Fig. 3, the log lower bounds obtained by
using the exact analytical expectations are compared to using
Monte Carlo sampling. As can be seen, the lower bound
obtained using approximations with 10 or more samples per
iteration follows the one obtained by the exact analytical
expectation closely. Furthermore, even using just one sample
to approximate the expectation the lower bound converges
to a value close to the analytical. This is in agreement with
the findings in [12] and [13], and makes intuitive sense since
the approximation error at every iteration is independent of
the error at other iterations and has zero mean; resulting in
a ‘noisy’ gradient of the cost function which is correct on
average.

Complexity In terms of computation time, there is an im-
portant difference between the sampling method we deploy
and the use of analytic expectations. The complexity of the
analytic expectation, and its derivatives, can increase greatly,



Figure 4: Heteroscedastic noise via the non-stationary mixing
density. The kernel is parameterized by two components; a squared
exponential kernel as well as the sum of a squared exponential and a
diagonal noise term. All hyper parameters are inferred. Upper plot:
Synthesized data. Second plot: The component association of each
observation. Third plot: Posterior predictions from each component
with a standard deviation on each side of the mean. The prediction
from a standard GP is shown in green. Fourth plot: Estimated
component probabilities (10). Bottom plot: Posterior samples.

even to the point of making it intractable, to that of directly
evaluating the covariance matrix that is needed, regardless,
for both methods. This issue is magnified particularly in the
case of compound kernels.

In the best case, when using the analytical expectation the
time complexity remains unchanged. In the worst case, using
e.g. a simple linear kernel, the sampling method would only
increase the complexity by a constant factor T (evaluating the
covariance matrix T times) assuming that the expectations
are the computational bottleneck. However, the covariance
matrix evaluations can be run in parallel. If the constant T can
be kept low without negatively impacting the obtained lower
bound, this can lead to substantial speed-ups (depending
on kernel and data size). In our specific environment the
total computation time of the lower bound using Monte Carlo
sampling with T = 1 was less than half compared to using the
analytical expectation for the squared exponential kernel (and
twice with T = 10). Throughout the rest of the paper T = 1
is used for the analytically intractable presented kernel.

Juxtaposition kernel
Multi-Modality The ability of the model to disambiguate
distinct modes in the output space, at the same locations in
the input space, is illustrated in Fig. 1. Since the two parti-
tions of the observations are conditionally independent they
can be explained by different covariance functions and a
significantly better data fit can be obtained. Given the regular-
izing properties of the used variational framework, balance
between model complexity and data fit is recovered auto-
matically. The data in the example cannot be represented
by a Gaussian likelihood satisfactory; this forces a standard
(‘single-process’) GP to explain the data using a high noise
variance. The result is poorly explained observations and a
model with low predictive power. By allowing observations
to become conditionally independent of observations close
in the input space, via the latent X(c) space, a more probable

Figure 5: 2-D data as 1-D regression. The kernel is parameterized
by three squared exponential kernels. Left plot: Synthesized 2-D.
Second plot: The component association of each observation. Third
plot: Posterior predictions from each component with a standard
deviation on each side of the mean. Right plot: Posterior samples.

and useful explanation of the data is obtained. A real world
example of this is illustrated in Fig. 2, where joint positions
are disambiguated in motion data.

Posterior predictions of mean and variance are provided
by the individual components allowing for prediction in the
input space. We compare the results with those of a normal
covariance that is forced to explain all of the variations in the
signal as noise. Another view-point is to think of our model
as a means to cast a multi-modal problem as a regression
problem. An extreme case of this is shown in Fig. 5 where
the letter S is decomposed into three different functions. Im-
portantly, we can predict three different outputs from a single
input space, in effect we have decomposed this multimodal
regression problem into a regression problem with one free
latent variable that differentiates between the modes.

Non-Stationarity An example of modelling single-modal
non-stationarity in the form of heteroscedastic noise is found
in Fig. 4. Here the factorisation kernel is used as a means
of forming a GP prior where individual observations are ex-
plained by either a noiseless or noisy smooth function. In
this model, the covariance of observations are dependent on
the local properties of the data partitioning in the input space
(such as relative density) in addition to the hyper parameters
governing their respective components covariance function.
As a result, the compound covariance function can model
local noise characteristics of the data non-parametrically. By
comparison, the standard squared exponential covariance
overestimates the variance in the noiseless region while un-
derestimating (being overconfident) in the noisy regions.

Jura Geostatistics
In Fig. 6a the effects of the properties of the presented ker-
nel is illustrated on a real world data set comprised of mea-
sured element concentrations throughout the geographical
region of Jura, Switzerland [10]. The geographical distance
between neighbouring data points in the data set are around
a kilometer. We believe it is fair to assume that the concentra-
tions within the area around each data point are ‘sporadically
mixed’ rather than ‘homogeneously blended’. In other words,
the soil within an area is not necessarily blended such that in-
dividual samples of it contain a representative concentration
for the region. An analogy would be trying to locate a suit-
able location for a gold mine; a single measurement of gold
concentration within a square kilometer, even in the most



(a) Cobalt concentration

(b) Copper concentration

Figure 6: The factorizing kernel parameterized with two squared
exponential kernels to model geostatistics data as a result of a
non-stationary probabilistic mixing of two stationary gaussian pro-
cesses. The data set is from [10]. Colored rings illustrate observa-
tion component associations. Left column: Element concentrations
measured throughout Jura, Switzerland. Second column: Posterior
means using a standard GP with a squared exponential kernel (a

‘single-component’ GP). Third and fourth column: Posterior means
for the first and second component respectively when used within
the factorizing kernel. Right column: Estimated component proba-
bilities (10), where the relative mixture of red and blue illustrate the
probability for respective component.

gold rich areas, can result in both a low concentration and
‘hitting the motherlode’. We model this as that any individual
measurement (or sample) within a given area is drawn from
any of L probability distributions. The probability for a given
distribution depends on the location, which we model as
p̂(x

(l)
∗ = 1|x∗,Y,X). For the given data, we make the con-

servative assumption that L = 2 and that independently each
of the two generating processes are stationary and smoothly
varying; this we model by parameterizing the factorizing
kernel using squared exponential kernels. As can be seen
in the respective figures, the non-stationary process is not
forced to explain the local high concentrations as high levels
of global noise but can capture the multi-modal smoothly
varying trends of the data set.

Conclusion
We have presented Latent Gaussian Process Regression, a
natural extension to GP regression that allows modelling of
non-stationary multi-modal processes using a simple combi-
nation of any covariance functions. We show how our method
can be used to factorise a signal into several different pro-
cesses which allows modelling of multi-modal data. We also
show how non-stationary single-modal data can be modelled
using the same approach. Our approach builds on a latent vari-
able extension of the input domain which is approximatively
marginalised out. We provide empirical evidence which high-
lights that a simple sampling based approach can be used to
replace expensive, and sometimes intractable, expectations
in the traditional variational formulation of GP-LVMs. In its
current form the number of components is a free parameter
which we, in later work, hope to directly infer from data.
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