
Learning a Manifold of Fonts
Supplemental Material

Neill D.F. Campbell1
1University College London

Jan Kautz1,2

2NVIDIA Research

A Fonts Used

Andale Mono Andalus Angsana New
Aparajita Arial Browallia New
Calibri Cambria Candara

Consolas Constantia Corbel
Cordia New DaunPenh David

Ebrima Euphemia Franklin Gothic Book
Gautami Georgia Gill Sans MT
Kalinga Lao Sangam MN Lucida Sans Unicode

MS PMincho Microsoft Himalaya Microsoft Sans Serif
Microsoft Tai Le Miriam Mongolian Baiti

MoolBoran Narkisim Nyala
PMingLiU Palatino Linotype Perpetua

Plantagenet Cherokee Shonar Bangla SimSun-ExtB
Sylfaen Tahoma Times New Roman

Traditional Arabic Trebuchet MS Vani
Verdana

Table 1: The fonts used in our experiments.

We took the ‘ttf’ files from the fonts folder on a ‘Windows 7’ in-
stallation and removed any non-latin or symbol based fonts. We
also removed a few fonts that were topologically inconsistent over
many letters, for example handwriting based fonts; if only a few
letters are inconsistent, e.g.’g’, we omitted the inconsistent character
and embedded the font with missing data so that the manifold fills
in unmatched character [Navaratnam et al. 2007]. Our training set
includes examples of many different categories of typefaces (e.g.
Humanist, Garalde, Didone/Modern, Slab, Lineale/Grotesque, and
Glyphic) for a total of 46 fonts listed in Table 1.

B Details on the GP-LVM
Here we provide a more in-depth introduction to Gaussian Processes,
illustrating their use for regression. We then extend this technique
to present the Gaussian Process Latent Variable Model (GP-LVM)
that we use to construct probabilistic manifolds. Finally, we provide
the details about how to learn the true dimensionality of a manifold
from the data.

B.1 Gaussian Processes

Gaussian Processes (GPs) are a non-parametric model that consist
of distributions over functions. They can be used as a powerful
way to model regression, that producing a smooth mapping func-
tion from an input space to an output space (both of which maybe
multi-dimensional vector spaces); essentially they act as a prior that
encourages functions to be smooth. A full treatment is beyond the
scope of this work and instead we provide a basic illustrative exam-
ple; there are many excellent texts on GPs including the definitive
book by Rasmussen and Williams [2006]. We begin by considering
using GPs for the problem of regression and then show how we may
treat the problem of finding a manifold (or probabilistic dimension-
ality reduction) as a new take on the regression task, forming the
GP-LVM.

Notation For the illustration of the regression task we will use
the following notation. Suppose that we have a set of training
data pairs {x j,y j} that associate an input vector x j ∈ R Q with its
corresponding output vector y j ∈ R D with respective dimensions

of Q and D. If we need to consider multiple sets of these vectors
we stack them together row-wise to produce a matrix, for example
X = [· · ·x j · · ·]T and Y = [· · ·y j · · ·]T.

GP Regression In the task of regression, we wish to identify a
function f (·) that maps the input to the output space so that we can
take a new input x∗ and find the corresponding output as y∗ = f (x∗).
Now, if we take a GP it has the property that any discrete set of
samples taken from the GP will be normally distributed. Thus if
the GP is evaluated at a series of values X = [x1 · · ·xJ]

T from our
input space, the corresponding output values Y = [y1 · · ·yJ]

T will be
distributed as

P(Y |X) = N (Y |M(X),C(X ,X)) (B-1)

where

N (x|µ,Σ) = ‖2πΣ‖−
1
2 exp

(
−1

2
(x−µ)T

Σ
−1(x−µ)

)
(B-2)

is the standard multivariate Gaussian distribution with M(·) as a
mean function and C(·, ·) as a covariance function. The mean func-
tion generates a vector from the input X and the covariance function
creates a (positive semi-definite) covariance matrix, these vectors
each have the same number of dimensions as there were examples
given (in this case J). Thus the GP handles an infinite object (a
function defined over a continuous space) by considering only a
finite set of input values at a time (J values in our example) and
returning the corresponding finite set of output values.

Condition on Training Data Now we know about the distribution
between the input and output spaces of a GP we can make it useful
for regression by conditioning the GP on our training data. That is
to say that we add the constraint that if any of the training inputs Xtr
are presented to the GP, the corresponding training output Ytr should
be produced. Thus if we consider a new test input x∗, we can find
y∗ = f (x∗) as[

Ytr
y∗
]
∼ N

([
M(Xtr)
M(x∗)

]
,

[
C(Xtr,Xtr) C(Xtr,x∗)
C(x∗,Xtr) C(x∗,x∗)

])
. (B-3)

We simplify the situation by subtracting the mean from our training
input and output so that the mean function becomes a zero-vector.
Standard manipulation can convert this to an output function as

f (x∗)∼ N
(

C(x∗,Xtr)C(Xtr,Xtr)
−1Ytr, Σ

∗
)

(B-4)

with the output covariance (‘error bars’) as

Σ
∗ =C(x∗,x∗)−C(x∗,Xtr)C(Xtr,Xtr)

−1C(x∗,Xtr) . (B-5)

Therefore, the conditioned GP provides the regression function
to predict output vectors for new input vectors with the predicted
value as the mean of (B-4) and the covariance value Σ∗ providing a
measure of confidence in the prediction; a low standard deviation
would indicate a very precise estimate. Please see [Rasmussen and
Williams 2006] for further details.

The Covariance Function The final part of the GP regression
model is then to specify the covariance function C(·, ·). This func-
tion must accept one or more samples from the input space as each
argument and return a covariance value between each pairwise com-
bination of samples. The function can depend on a small number
of ‘hyperparameters’ that we shall denote with θ . The elements a
particular covariance matrix given by a set of inputs are indexed

using the notation for representing a set of vectors described above.
Thus [

C([· · ·xi · · ·]T, [· · ·x j · · ·]T|θ)
]

i, j
= c
(
xi,x j|θ

)
(B-6)

where [·]i, j denotes the element at the ith row and jth column of the
matrix and c(xi,x j|θ) denotes the covariance between two input
vectors.

Perhaps the most typical covariance function would be a radial basis
function (RBF)

c
(
xi,x j|θ

)
= α exp

(
−1

2
ψ ‖xi−x j‖2

)
(B-7)

where α and ψ are the hyperparameters and therefore θ = [α,ψ].
We can see that this covariance function will produce a smooth
mapping from the input space to the output space since nearby input
vectors will have a high covariance and therefore the output vectors
will be correlated. Similarly, if the input vectors are far apart (relative
to the length -scale parameter ψ) then there will be a low covariance
and the corresponding output vectors will be independent of one
another.

The training of a GP consists of learning the values for these hyper-
parameters by maximizing the log-likelihood (B-1) of the training
data (Xtr,Ytr) to give an optimal setting θ∗. Since the covariance
function can be a powerful, non-linear function, as in the case of
the RBF, this training cannot be performed analytically and is in-
stead performed using gradient based methods such as Conjugate
Gradients.

B.2 The GP-LVM

We can think of the task of dimensionality reduction for a set of
high dimensional vectors as identifying a set of low dimensional
vectors that recreate the corresponding high dimensional vectors
under a basic mapping. More powerfully, we could then go further
to consider a manifold model that defines a generative mapping
function, as well as the low dimensional vectors, such that new
locations in the low dimensional space will be mapped to novel but
plausible output values.

Manifold Modelling as Regression With this in mind, we return
to the GP model that we have established as a powerful, non-linear
regression technique. Suppose that no longer have pairs of input and
output training examples, but instead only a set of high dimensional
vectors; we move from supervised learning to unsupervised learning.
If we treat these high dimensional vectors (the font outlines in our
case) as the output of a GP regression model, then we observe that
finding a manifold model is the same as finding a set of correspond-
ing, low dimensional input vectors and the hyperparameters for the
covariance function (the points on the manifold and the mapping).

The GP-LVM, therefore, may be thought of as a GP regression model
with the regression input and output operating the other way around.
The input to the GP-LVM model is a set of high dimensional data
{y j} ∈ R D (the regression output) and we find corresponding low
dimensional data {x j} ∈ R Q (the regression input), with Q� D,
and the hyperparameters θ . The low dimensional space is also
termed the ‘latent’ space since it is unobserved and must be inferred.
Once we have performed this learning task, the manifold model then
becomes a GP regression process, as in (B-4) where any location
in the low dimensional space (a point on the font manifold) will
be mapped into a new high dimensional vector (a new font outline)
with the variance value indicating the likelihood of the generated
high dimensional vector in terms of the training fonts provided.

Noise Model Representing a set of very high dimensional vectors
by a low dimensional manifold is obviously a challenging process

and we require a trade-off between producing a perfect reconstruc-
tion of the data and a smooth and useful manifold. With this in mind,
a noise model is usually added to the covariance matrix during train-
ing to account for any slight noise in the high dimensional vectors.
We therefore replace the basic covariance function of (B-7) with

c′
(
xi,x j|θ

)
= α exp

(
−1

2
ψ ‖xi−x j‖2

)
+σ

2 (B-8)

where σ is the standard deviation of the noise. The noise term is only
present during training and is not used afterwards when generating
high dimensional vectors using (B-4).

In our experiments, the noise variation was found to be very small,
suggesting that the font outlines do indeed lie on a low dimensional
manifold.

Training The training process for the GP-LVM considers the like-
lihood of the high dimensional data Y as

P(Y |X ,θ) =
M

∏
m=1

N
(

ym | 0,C(X ,X |θ)+σ
2I
)

(B-9)

where there are M training examples (one for each font) and I is the
identity matrix. Whereas, for the GP model we simply maximized
the log-likelihood over the hyperparameters θ , for the GP-LVM train-
ing we must maximize jointly over the latent vectors X = [· · ·x j · · ·]T
as well as θ such that

X∗,θ∗ = argmax
X ,θ

log [P(Y |X ,θ)] . (B-10)

Again, the covariance function is a complex, non-linear function,
both in terms of its relationship to X and to θ ; however, gradients
may be found against both so training may be performed using
Conjugate Gradients [Lawrence 2005]. Such methods require initial
values for both X and θ . As is standard [Lawrence 2005], we
initialize the latent values with a linear PCA reduction of the high
dimensional vectors Y and set the hyperparameters to conservative
values with a wide uninformative prior.

B.3 Manifold Dimensionality

For the purpose of visualization, we have limited the manifold di-
mensionally in the figures (and the interactive javascript viewer) to
Q = 2. In reality the dimensionality of the manifold may be higher.
In order to identify the true dimensionality of the manifold, we used
a more advanced derivate of the GP-LVM, the Bayesian GP-LVM
of Titsias and Lawrence [2010]. Their approach uses the ‘Automatic
Relevance Determination’ (ARD) covariance function

card
(
xi,x j|θ

)
= α exp

(
−1

2

Q

∑
q=1

ψq(xi,q− x j,q)
2

)
(B-11)

instead of the standard RBF kernel of (B-7). Comparing the RBF
and ARD kernels we see that the ARD kernel has a different length-
scale parameters for each dimension, {ψq}. The Bayesian GP-LVM
marginalizes out, rather than optimize, the latent space X . This
allows us to set Q to a large value, run the learning process, and then
look at the values of each ψq. If a dimension is unnecessary, we
will have the corresponding value of ψq→ 0. Thus, we count the
number of non-zero length-scales to determine how many dimen-
sions are useful. For the joint manifold, shown in Figure 1, the best
setting is obtained with Q = 4 manifold; this explains the separation
into islands when constrained to Q = 2. Manifolds for individual
characters may differ in intrinsic dimensionality, for example the
character ‘g’ has Q = 3.

References
LAWRENCE, N. 2005. Probabilistic non-linear principal component

analysis with gaussian process latent variable models. The Journal of
Machine Learning Research 6, 1783–1816.

NAVARATNAM, R., FITZGIBBON, A., AND CIPOLLA, R. 2007. The
joint manifold model for semi-supervised multi-valued regression. In
IEEE 11th International Conference on Computer Vision.

RASMUSSEN, C. E., AND WILLIAMS, C. 2006. Gaussian Processes
for Machine Learning. MIT Press.

TITSIAS, M., AND LAWRENCE, N. 2010. Bayesian gaussian process
latent variable model. In 13th International Workshop on AI and Stats.

