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Fig. 1. The rise of consumer cameras enabled ubiquitous capture of 360° panoramas as users want to share and relive experiences.
However, existing projection techniques flatten the panorama and remove motion parallax – an important depth cue for the human
visual system. We present a new method that provides high-quality parallax rendering that restores this depth cue and allows the
viewer to explore static scenes with translation as well as rotation. Our method is able to correctly occlude the cars as the viewer
translates to the right (orange box), and improves rendering quality over previous techniques (blue box).

Abstract—The ubiquity of smart mobile devices, such as phones and tablets, enables users to casually capture 360° panoramas with
a single camera sweep to share and relive experiences. However, panoramas lack motion parallax as they do not provide different
views for different viewpoints. The motion parallax induced by translational head motion is a crucial depth cue in daily life. Alternatives,
such as omnidirectional stereo panoramas, provide different views for each eye (binocular disparity), but they also lack motion parallax
as the left and right eye panoramas are stitched statically. Methods based on explicit scene geometry reconstruct textured 3D geometry,
which provides motion parallax, but suffers from visible reconstruction artefacts. The core of our method is a novel multi-perspective
panorama representation, which can be casually captured and rendered with motion parallax for each eye on the fly. This provides a
more realistic perception of panoramic environments which is particularly useful for virtual reality applications. Our approach uses
a single consumer video camera to acquire 200–400 views of a real 360° environment with a single sweep. By using novel-view
synthesis with flow-based blending, we show how to turn these input views into an enriched 360° panoramic experience that can be
explored in real time, without relying on potentially unreliable reconstruction of scene geometry. We compare our results with existing
omnidirectional stereo and image-based rendering methods to demonstrate the benefit of our approach, which is the first to enable
casual consumers to capture and view high-quality 360° panoramas with motion parallax.

Index Terms—Casual 360° scene capture, plenoptic modeling, image-based rendering, novel-view synthesis, virtual reality

1 INTRODUCTION

Capturing 360° panoramas has become straightforward as this function-
ality is implemented on every phone. However, standard (monoscopic)
panoramas appear flat when viewed in virtual reality headsets. This is
because panoramas do not provide important depth cues such as binoc-
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ular disparity (different views for our left and right eyes) or motion
parallax (different views as the viewpoint changes). Binocular disparity
and motion parallax are important cues for correctly perceiving depth
[14] and feeling presence in virtual environments [33]. We propose a
new approach for capturing largely static real-world environments and
rendering high-quality, immersive 360° panoramas that provide both
binocular disparity and motion parallax (see Figure 1).

Most techniques for capturing panoramas for virtual reality build on
omnidirectional stereo [2, 23, 26, 29]. These approaches stitch multiple
views of a moving camera or from a multi-camera rig into separate left-
and right-eye panoramas. This way, omnidirectional stereo provides
different views for each eye (binocular disparity), but it cannot provide
any motion parallax to a viewer. Moreover, the rendered views exhibit
vertical distortion resulting in curved lines, most notably for nearby
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scene objects. Huang et al. [15] introduce parallax into a 360° image
using depth-based warping; however, the visual quality of their results
is limited by easily visible warping artefacts. Luo et al. [18] propose
another 360° scene representation with motion parallax based on im-
age warping, but motion parallax is only achieved near the captured
viewpoints, and they require thousands of input images captured with a
robotic arm, which prevents casual capture. Hedman et al. [13] instead
reconstruct textured 3D geometry that provides motion parallax directly.
Their approach strongly relies on dense depth estimation, which suffers
from reconstruction errors in traditionally challenging cases such as
uniformly coloured regions or highly detailed geometry.

We introduce an end-to-end pipeline and specifically tailored tech-
niques for turning a casually captured monoscopic video into an en-
riched 360° panoramic experience with motion parallax that can be
explored in real time. Our new approach generalises omnidirectional
stereo techniques to free-viewpoint image-based rendering. Specifi-
cally, our new novel-view synthesis approach (Section 6) computes
each pixel’s colour based on its optimal pair of input images, which
are combined using view-dependent flow-based blending. These con-
tributions make it possible for casual consumers to capture and view
high-quality 360° panoramas with motion parallax in real time.

2 RELATED WORK

Our work builds on the extensive literature on panorama stitching,
omnidirectional stereo, 3D reconstruction, novel-view synthesis, light
fields and image-based rendering. Here, we briefly discuss a selection
of related work from each of these areas. Like most techniques, we
assume a static environment.
Image and video stitching Stitching of panoramic images [34] and
360° videos [25] has become widely available and can be found in
consumer cameras. However, stitching aims to fuse different views
into a single spherical view of the world by overcoming the parallax
between input views. This removes important depth cues and results
in a flat appearance. Recent work introduces binocular disparity by
warping using structure-from-motion [15] or stitching the views of two
360° cameras [19]; both suffer from warping and stitching artefacts,
without providing any motion parallax.
Omnidirectional stereo Techniques for omnidirectional stereo are
stitching stereoscopic multi-perspective panoramas [36] from a moving
camera [16, 23, 26] or multi-camera rigs [2, 29], but suffer from vertical
distortion [31] and lack of motion parallax [2, 13]. Thatte et al. [35]
proposed adding depth maps to enable motion parallax, but estimating
depth maps for general scenes remains challenging. Our approach ex-
tends multi-perspective panoramas by introducing novel-view synthesis
with motion parallax.
Light fields By representing a densely-sampled subset of the plenop-
tic function [1], light fields enable the synthesis of novel views with
binocular disparity and motion parallax [11, 17]. In practice, the high
sampling density required by light fields prevents casual scene capture,
as it necessitates special camera hardware [8, 22] or user guidance
during capture [4, 7]. Concentric panoramas [31] reduce the dimen-
sionality of light fields, but are difficult to capture in the real world.
Like omnidirectional stereo, concentric mosaics also suffer from verti-
cal distortion, which is difficult to compensate as it depends on depth.
Overbeck et al. [22] present a full pipeline for capturing, preprocessing,
transmission and rendering of light field stills. They use a revolving
rig to capture about a thousand images and present a novel per-pixel
splatting algorithm built on view-dependent geometry.
3D reconstruction Existing approaches for VR photography, such
as Layered Depth Panoramas [37] and Casual 3D Photography [13],
extend off-the-shelf structure-from-motion and multi-view stereo tech-
niques [10, 27] for recovering camera poses and scene geometry, which
enables rendering of accurate motion parallax. However, the reconstruc-
tion of accurate 3D geometry of arbitrary, unconstrained environments
remains challenging, as reconstruction techniques often fail in poorly or
repetitively textured scenes. This results in errors in the reconstructed
geometry. The layered geometry that is reconstructed limits the visual
quality of disocclusions that are caused by motion parallax, compared

to our approach which handles disocclusions naturally by sampling suit-
able image pixels from a dense ray database. Outdoor environments are
also particularly difficult because of their large size relative to the dis-
tance between camera viewpoints. Nevertheless, more accurate proxy
scene geometry will further improve the quality of our image-based
novel-view synthesis.
Image-based rendering (IBR) As a hybrid approach between 3D
reconstruction and light-field rendering [32], IBR builds on coarse
global 3D geometry [4, 9, 15] or per-view local 3D geometry [5, 12, 18]
to synthesise realistic novel views from warped input images, with
correct motion parallax. In doing so, IBR optimises for the visual
result and does not rely on accurate geometry reconstruction, which is
often fragile in practice. IBR thus also works in cases where dense 3D
reconstruction fails. IBR approaches have demonstrated high-quality
results thanks to local warps [5, 9] and geometry reconstruction using
a depth sensor [12]. As with light fields, this work is so far constrained
to rather limited capture volumes with outside-in camera arrangements,
and does not extend to general outdoor environments with distant
objects. Luo et al.’s Parallax360 approach [18] supports view synthesis
with motion parallax for 360° panoramas, but only on a spherical
surface of captured views, not inside the volume like our approach.
Novel-view synthesis At the core of image-based rendering lies the
synthesis of novel viewpoints from a set of captured input views [6, 30].
View synthesis requires correspondence between input views – either
explicit like depth maps [e.g. 24], implicit like using optical flow [e.g.
18], or learned [e.g. 38]. We use flow-based novel-view synthesis, as
it produces high-quality results without requiring explicit or learned
correspondence. Most previous flow-based interpolation techniques are
limited to synthesising novel views on a line between two viewpoints
[30] or within a triangle of viewpoints [18]. Our view synthesis tech-
nique is not restricted to view interpolation on the capturing surface,
but extrapolates new viewpoints using ray-based view synthesis.
Most related techniques Our approach is most related to omnidi-
rectional stereo techniques [2, 16, 23, 26, 29], which do, however, not
provide any motion parallax. Parallax360 [18] produces motion paral-
lax with image-based rendering, but only for viewpoints close to the
sphere of captured views. In particular, unlike our approach, theirs
cannot achieve motion parallax inside the captured sphere. Casual 3D
Photography [13] achieves motion parallax by virtue of its layered 3D
reconstruction. However, this also limits the visual quality of disocclu-
sions compared to our image-based novel-view synthesis, which does
not rely on explicit scene reconstruction.

3 OVERVIEW

Our approach can generate 360° datasets containing motion parallax
from hand-held video input without active guidance. We employ image-
based novel-view synthesis that produces high-quality, high-resolution
views with motion parallax in real time. Our approach does not rely on
any explicit scene geometry apart from a very coarse scene proxy such
as a plane or a cylinder. This positions our method naturally between
plenoptic and image-based rendering approaches [4, 20].Our approach
starts from videos that are casually captured with consumer cameras on
approximately circular paths. We process this footage to generate multi-
perspective panoramic datasets that can then be viewed with binocular
disparity and motion parallax thanks to high-quality, real-time, image-
based rendering. We next outline the steps of our approach (see also
Figure 2) and give details in Sections 4 to 6.
Capture (Section 4) To capture sufficient motion parallax within
360° panoramas, we assume a sweeping camera motion on a roughly
circular trajectory with radially outward-looking viewing directions. We
also assume the scene is static. Such videos can be captured casually by
end-users, and we show results for datasets we captured with different
consumer cameras like a GoPro Hero 4 and an Insta360 One.
Preprocessing (Section 5) We first reconstruct camera poses for all
video frames using structure-from-motion [27]. We manually select
a single captured ring of reconstructed cameras and register them to
an ideal circular trajectory. This imposes an ordering on the cameras
that facilitates the identification of neighbouring viewpoints. We finally



0

1 N–1

Time,
Position,
Angle

0
1

N–1vi
de

o 
fra

m
es

Capture
co

ns
um

er
ca

m
er

a

©GoPro ©
In

st
a3

60

tra
je

ct
or

y 
re

gi
st

ra
tio

n

Preprocessing

structure-from-motion

in
iti

al
 re

co
ns

tru
ct

io
n

au
gm

en
te

d 
re

co
n.

vi
ew

 s
am

pl
in

g
registration pinhole viewpoints

di
st

or
te

d 
im

ag
e

un
di

st
or

te
d 

im
ag

e

bidirectional optical flow

left camera

right camera

FLR FRL

Rendering

10° left 10° right0°

Two-view image synthesis

X

CD CR CL rD

Fig. 2. Overview of our approach. Capture: We acquire an input video with a hand-held consumer camera (Section 4). Preprocessing: Compute
per-frame camera poses using structure-from-motion in a two-step reconstruction procedure (Section 5.1). The views are registered to an ideal
circular camera trajectory (Section 5.2) and sampled for uniform angular spacing (Section 5.3). We then compute optical flow between each pair
of adjacent cameras to establish dense correspondences (Section 5.4). Rendering: The rendering is formulated per pixel using a novel two-view
view-synthesis approach that uses flow-based blending based on position and viewing direction of the novel view and the input views (Section 6).

compute bidirectional optical flow [3] between each pair of adjacent
cameras, which will enable live view synthesis during rendering.
Rendering (Section 6) At run time, our approach performs on-the-
fly view synthesis in real time. First, for every pixel, we identify the
optimal pair of camera views given the ray from the target viewpoint
to the pixel. Then, each pixel’s colour is interpolated from its pair
of optimal views, depending on both the ray through the pixel and
the position of the desired view. For this interpolation, we propose a
novel view-dependent flow-based blending technique tailored for our
image-based rendering method.

4 CAPTURE

The starting point of our approach is the capture of a single input
video, which is recorded with a moving consumer camera. For 360°
omnidirectional stereo panoramas, the ideal camera trajectory has been
shown to be a circle with cameras pointing radially outwards [23]; the
same applies to our panoramas with motion parallax. We assume the
camera to be calibrated intrinsically, but we need to estimate camera
poses for the moving camera to accurately synthesise novel views in
subsequent stages of our approach.

In theory, the camera poses can be obtained using off-the-shelf
techniques like SLAM [e.g. 21] or structure-from-motion [e.g. 27].
However, for the inside-out camera configuration we are using, these
techniques face two main problems: (1) pairwise camera baselines are
small compared to scene depth, which results in ill-posed triangulations
that lead to tracking failures, and (2) most cameras have no pairwise
overlap as they are pointing in opposite directions, which often leads to
loop closure problems. In addition, it is difficult to produce perfectly
closing video loops with hand-held cameras because of natural vari-
ability in camera pose over time. For these reasons, camera geometry
cannot always be reconstructed reliably and we only show results for
which the reconstruction in Section 5.1 succeeded. A detailed exam-
ination of the influence of camera paths, camera intrinsics and scene
characteristics on reconstructibility is beyond the scope of this paper.
Hedman et al. [13] report success with fish-eye lenses that increase the
overlap between views, but such lenses are not usually found on most
consumer cameras. Nonetheless, we believe that additional work on 3D
reconstruction from narrow-baseline inside-out imagery is required for
creating casual user-centric VR and AR experiences more reliably.

5 PREPROCESSING

In this section, we take as input a video captured using the capturing
process described in the previous section, and prepare it for our real-
time image-based rendering technique in Section 6. We prepare a 360°
dataset with motion parallax via the following steps:

1. Reconstruction of camera geometry (Section 5.1).

2. Registration of cameras to the ideal trajectory (Section 5.2).

3. Sampling of cameras based on the ideal trajectory (Section 5.3).

4. Computation of optical flow between cameras (Section 5.4).

5.1 Reconstruction of camera geometry
We obtain the sparse reconstruction of scene geometry and camera
poses using COLMAP [27], assuming fixed camera intrinsics. Because
of small camera baselines and limited overlap between most views, we
perform reconstruction in two stages.

First, we perform a reconstruction from only a set of keyframes,
for example every tenth frame of the input video (depending on cap-
turing speed and circle radius), which yields sufficiently large camera
baselines to increase the robustness of the reconstruction procedure.

In a second stage, we then register all video frames to the existing
scene model, followed by bundle adjustment. This improves the con-
ditioning of the pose estimation of the densely sampled video frames,
resulting in more consistent reconstructions. We then undistort the input
video frames using the known intrinsic calibration parameters, giving
us fully-calibrated pinhole viewpoints.

5.2 Trajectory registration
We next register the reconstructed camera poses to an idealised contin-
uous camera trajectory, in our case a circle. This imposes an ordering
on the cameras, making it easy to find adjacent cameras and to index
them linearly using the polar angle ϕ ∈ [0,360). We show results for
circular trajectories, but more general paths are possible as well.

We use the centroid of all camera centres as the centre of the circle
and origin of our coordinate system. The circle radius r is set to the
average distance of camera centres from the origin. We rescale our
dataset to match the real physical set-up when the radius is known, and
use r=0.8 m for hand-held datasets. We next fit a plane to the camera
centres to obtain the normal direction n of the circle. We compute the
polar angle ϕi for each camera i by first projecting the camera centre
Ci and the x-axis onto the plane of the circle:

C∗i = Ci−n · (Ci ·n) (1)

x∗ = [1,0,0]>−n · ([1,0,0]> ·n) (2)
and then obtain the signed angle between their directions using

ϕi = atan2
(
(x∗×C∗i ) ·n, x∗ ·C∗i

)
. (3)

5.3 Camera sampling
Given the registered and parametrised camera trajectory, we next sam-
ple a subset of cameras that are approximately uniformly spaced in
parametric space. This ensures that input views sample the entire en-
vironment as uniformly as possible, regardless of the speed at which
the camera was moving during the capture process. For our datasets,
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Fig. 3. Camera geometry for two-view novel-view synthesis of the novel
view (green) using the left (blue) and the right views (orange). The desired
ray rD from the camera centre CD through the pixel xD intersects the
proxy geometry at a point X. This point is then projected into the left and
right cameras, yielding pixels for blending (xL and xR, respectively).

we use an angular baseline β of one to two degrees, corresponding to
about 180 to 360 camera viewpoints per circle.

We found empirically that the depth structure and scene appearance
of the captured environment have a great influence on the minimum
required sampling frequency. For example, a low sampling frequency is
sufficient for textureless or distant regions, such as a blue sky or distant
mountains, as motion parallax will be imperceptible and view synthesis
can still be reliably performed on wider baselines. On the other hand,
the appearance of thin and nearby objects is improved by increasing the
sampling frequency. This suggests that an adaptive, scene-dependent
sampling strategy would be a useful extension.

5.4 Optical flow

In our image-based novel-view synthesis (see Section 6), each pixel’s
colour is computed from a pair of adjacent cameras. We use the tra-
jectory’s parametrisation (ϕi) to identify all pairs of adjacent cameras,
and then compute dense correspondences between each pair of images
using bidirectional optical flow [3].

We precompute the optical flow fields to minimise computation
requirements at run time during the rendering. To reduce computa-
tion times during preprocessing, as well as memory usage and disk
bandwidth during rendering, we compute the flow at half the image
resolution. This produces visual results comparable to full-resolution
flows but is significantly more efficient.

6 RENDERING

The goal of the final rendering stage is to synthesise novel views in real
time within a viewing area inside the circle of captured views. We first
present our new per-pixel image-based rendering technique that exploits
known camera geometry and dense correspondences to interpolate
views from a pair of cameras (Section 6.1). We then describe how to
find the optimal camera pair for view synthesis within the hundreds of
cameras of typical panoramic datasets (Section 6.2). We analyse the
maximum size of the viewing area supported by our view-synthesis
approach in Section 8.

6.1 Novel-view synthesis from two cameras

In this section, we introduce the core building block of our image-based
rendering approach: novel-view synthesis from two input views using
view-dependent flow-based blending. We assume that the pair of closest
cameras is given in this section, and discuss the selection of the camera
pair in Section 6.2.

We assume that we are given the two input images IL and IR, corre-
sponding to the left and right cameras of the camera pair, and we want
to synthesise the image ID of the desired camera view. As illustrated
in Figure 3, these cameras are defined by their camera centres CL, CR
and CD, and their orientations.

linear blending flow-based blending

Fig. 4. Linear blending often results in ghosting artefacts (see red arrows),
which are reduced with our view-dependent flow-based blending.

FRL

vRL

(1–α)·FRL*
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*

vLR

α · FLR*

FLR
FLR*

X

IL IR

FLR FRL

xL*

proxy

actual Z
xL

xR* xR

Fig. 5. View-dependent flow-based blending (for α = 0.5). Left: A scene
point Z (black circle)is imaged at xD (green filled circle) and approximated
by X (grey outline circle). X projects onto xL and xR (filled squares). Note
that, in practice, scene points and proxy are much further away (several
metres) compared to the camera baseline (a few cm) than shown. Right:
Image plane of the novel view. Optical flow FLR (upper red arrow) is
used to account for wrongly re-projected pixels, e.g. xL (FRL analogously).
Blending is performed with flow-adjusted pixels x∗L and x∗R.

6.1.1 Linear blending
We synthesise the novel view ID per pixel, so that it can be efficiently
computed in parallel on the GPU. In our approach, we use a planar
proxy geometry that is fixed at a given distance in front of the desired
camera, and we thus do not require accurately estimated scene depth. To
compute the colour of a pixel xD in the desired view, we first obtain the
world point X on the proxy geometry that projects to xD in the desired
camera (see diagram in Figure 3) by rasterising the proxy geometry
using OpenGL. The world point X projects to xL and xR in the left and
right cameras, respectively. For a baseline linear blending, we combine
the colours sampled from the left and right images, IL and IR, at xL and
xR, respectively, using a convex combination:

ID(xD) = (1−α) · IL(xL)+α · IR(xR), (4)
where α∈ [0,1] is the blending weight between the views for pixel xD,
which we define in Section 6.2. This simple linear blending baseline
often results in ghosting artefacts, as shown in Figure 4.

6.1.2 View-dependent flow-based blending
Coarse proxy geometry generally causes large re-projection errors
that lead to blurry images [4, 9]. Richardt et al. [26] introduced flow-
based ray interpolation to overcome this problem and synthesise high-
quality panoramas on a cylindrical imaging surface. We extend their
approach to synthesise novel views for desired viewpoints that are not
constrained to the predefined viewing circles of the omnidirectional
stereo framework or the camera circle [18]. To this end, we exploit the
camera geometry and the precomputed dense optical flow (Section 5.4)
to determine view-dependent image coordinates x∗L and x∗R, at which
to sample the left and right images (see Figure 5 and compare to
Equation 4):

ID(xD) = (1−α) · IL(x∗L)+α · IR(x∗R). (5)
We use precomputed optical flow (Section 5.4) to compensate for the
depth mismatch between an imaged scene point Z and its approximation
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by the proxy point X, which is particularly large for nearby objects.
This scenario is illustrated in Figure 5. Specifically, we use the plane-
induced displacement between the projections xL and xR:

vLR = xR−xL and vRL = xL−xR, (6)
which are shown in grey, and the optical flow fields FLR and FRL (in
red), to compute a local flow displacement (in green):

F∗LR(xL) = vLR−FLR(xL) and (7)
F∗RL(xR) = vRL−FRL(xR). (8)

By scaling these displacements with the view-dependent blending
weight α∈ [0,1] that accounts for the pose of the desired camera, we
compute image coordinates that effectively compensate for the depth
mismatch between scene and proxy geometry (black arrows):

x∗L = xL +α ∗F∗LR(xL) and (9)
x∗R = xR +(1−α)∗F∗RL(xR). (10)

The magnitude of the local flow displacements F∗LR and F∗RL provides
an indication of the distance of scene points: small displacements
indicate that scene points are close to the proxy geometry, while large
displacements generally indicate nearby scene objects. Figure 4 shows
the benefit of our view-dependent flow-based blending approach. Note
that ghosting artefacts occur more frequently in image areas with higher
re-projection errors.

6.2 Finding the best camera pair
Our panoramic datasets comprise hundreds of input views. Instead of
computing the convex combination of potentially hundreds of views,
as in unstructured lumigraph rendering [4], we identify the best pair
of adjacent cameras L and R to synthesise each pixel xD of the novel
view D. For this purpose, we consider the angles between the ray rD
to be synthesised and the rays rL and rR to the left and right cameras,
CL and CR, all of which are starting at the centre of the desired camera,
CD. See the diagram in Figure 6 for illustration.

We first project all rays into the plane of the camera trajectory using
Equation 1, and obtain the rays r∗D, r∗L and r∗R. Next, we iterate over
all pairs of adjacent cameras, L and R, and compute the signed angles
between the left camera and the desired direction, αLD = ∠(r∗L,r

∗
D),

as well as between the right camera and the desired direction, αRD =
∠(r∗R,r

∗
D). We have found the optimal camera pair if rays r∗L and r∗R (1)

lie on either side of r∗D, i.e. αLD·αRD 6 0, and (2) are in the hemisphere
centred on r∗D, i.e. |αLD| , |αRD|< π

2 . We then use the identified cameras
to synthesise the colour of the pixel xD as described in Section 6.1.

To compute the blending weight α , we consider the ratio of angles
between r∗D, r∗L and r∗R. Specifically, we compute α using

α =
αLD

αLR
=

∠(r∗L,r
∗
D)

∠(r∗L,r
∗
R)

. (11)

It is worth noting that if a desired ray r∗D passes through an input camera,
it is collinear with either r∗L or r∗R, resulting in a blending weight of
α ∈{0,1}. The ray’s colour will thus be entirely determined by the
camera through which it passes. This satisfies the epipole consistency
requirement articulated by Buehler et al. [4].

6.3 Sampling and reconstructing the plenoptic function
Every pixel of every input image is a sample of the plenoptic function
[1]. The synthesis of a pixel in a novel view then corresponds to recon-
structing the plenoptic function for a given position CD and direction
rD. In our approach, we combine the closest two plenoptic samples
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Fig. 7. Results on the Jaman dataset. We translate the novel view and
compare our results with ULR [4] and Megastereo [26]. Our results show
high visual fidelity and plausible motion parallax (see crops).

Fig. 8. Red-cyan anaglyph stereo views generated by our approach for
two views with significant motion parallax. Dataset by Richardt et al. [26].

(xL and xR), associated with the two closest cameras (see Figure 6).
For camera ray reconstruction, we use view-dependent flow-based
blending to identify suitable plenoptic samples and blend them linearly
(Section 6.1) to synthesise the pixel in the output view.

7 RESULTS

In Figures 7 and 10 and our supplemental video, we show novel views
synthesised by our approach for multiple panoramic datasets and com-
pare them to Megastereo [26], a state-of-the-art omnidirectional stereo
technique that is most closely related to our desired capturing setup. We
also compare to unstructured lumigraph rendering (ULR) [4] as a base-
line proxy-based image-based rendering technique. While ULR (using
the four nearest cameras) generates views with motion parallax, they
suffer from severe ghosting due to texture misalignment. Megastereo
generates sharp views but without any motion parallax. Our results
simultaneously exhibit high visual fidelity and motion parallax.

This is best seen in the supplemental video, where we show circular
camera paths and a forward–backward translation to demonstrate that
our approach produces plausible motion parallax in this case as well.
We can easily render stereoscopic images using our approach, which
we show using red-cyan anaglyph stereo images in Figure 8. Note that
our approach delivers both binocular disparity and motion parallax.

dense point cloud reconstructed mesh

Fig. 9. The dense reconstruction result obtained from our Jaman dataset
using COLMAP [28] is unsuitable for view synthesis because of its incom-
pleteness. Natural outdoor datasets remain challenging to reconstruct.
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Fig. 10. Comparison of synthesised views between ULR [4], Megastereo [26] and our approach. Datasets (from top to bottom): Rooftop, Street,
Office and Campus. Our results have high visual fidelity and produce motion parallax (see crops), which reveals occluded objects such as cars
occluded by the roof (top row) or the cars parked behind the black car (second row). We show results for the BBQ dataset in the supplemental video.

As demonstrated by Hedman et al. [13], even state-of-the-art 3D
reconstruction techniques still produce patchy reconstructions with
many holes, e.g. for the sky, which make them unsuitable for novel-
view synthesis. We show such an example in Figure 9. The related
approaches of Hedman et al. [13] and Luo et al. [18] are not designed
to work on our input data, as they assume a different capture strategy:
sparse fisheye views and capturing 4,032 images with a robotic arm
on a sphere, respectively. Conversely, their sparse input views do not
sample viewing directions sufficiently densely for our approach to
work well. However, in our supplemental video, we compare the core
view synthesis approach of Luo et al. [18] to ours. The former uses the
desired camera’s viewing direction instead of the per-pixel ray direction
rD in our case. This results in a synthesised image on the camera circle
as a mixture of its two neighbouring cameras.

Datasets The datasets we show were captured with a range of dif-
ferent cameras and capture strategies, see Table 1 for a complete list,
including their main parameters (illustrated in Figure 11). Rooftop,
Street and BBQ were captured with a single circular sweep using a

GoPro 2. Office was captured with a single circular sweep using a
Samsung Galaxy S9+. Campus and Jaman were captured with a single
circular sweep using an Insta360 One 360° camera. From the stitched
equirectangular video, we extracted perspective views with a field of
view of 120°×120° for use with our approach. The wider field-of-view
makes the reconstruction of camera geometry more reliable in practice.

Table 1. Datasets shown in our paper.

Dataset Capture Images (N) Radius r β γ

Jaman manual 275 0.80 m 1.3° 120.0°
Rooftop [26] rig 360 1.22 m 1.0° 87.66°
Street [26] manual 180 0.80 m 2.0° 87.66°
Office manual 200 0.80 m 1.8° 39.99°
Lake rig 360 0.84 m 1.0° 120.0°
BBQ manual 144 0.80 m 2.5° 87.66°
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Fig. 11. Idealised dataset geometry. The angular baseline β represents
the spacing of views on the camera circle (in red) with radius r. The angle
γ denotes the horizontal field-of-view of the input camera.

Run times Our preprocessing takes about 4 hours for 400 images
with a resolution of 1440×1920 pixels on an Intel i7-7700K quad-
core CPU with 32 GB RAM and an NVIDIA GTX 1080 GPU. The
computational bottleneck of the preprocessing is structure-from-motion.
Peak rendering time for a one-megapixel image is 5 ms, resulting in a
frame rate of 200 fps, which is suitable for VR head-mounted displays.

8 VIEWING AREA ANALYSIS

Based on the assumption of an ideal circular camera configuration
(illustrated in Figure 11) with a radius r, angular baseline β and (hor-
izontal) field of view of γ , we now derive an analytical upper bound
for the the supported viewing area size and verify it experimentally.
For a derivation of the minimum visible depth, we refer the reader to
Schroers et al.’s Appendix C [29].

The range of supported views is constrained by the reconstructed
camera geometry to an approximately circular viewing area that is
concentric with the camera circle. This generalizes the viewing circle
commonly used in omnidirectional stereo approaches [2, 16, 23, 26, 29]
or the viewing sphere used by Luo et al. [18].

For a fixed viewpoint, such as C0 in Figure 12, the quality of the
synthesised ray depends on the degree of overlap between the field-
of-views of the enclosing camera pair (light blue and orange). If both
cameras overlap, the ray’s colour is synthesised as a mixture of the two
cameras (green error band at top of figure). If they do not overlap, the
colour mixture fades to black, as one camera’s view is out-of-bounds
and its contribution is thus zero or black (yellow error band).

Specifically, let’s consider a viewpoint such as C1 or C2 in Figure 12,
which is translated horizontally away from C0 by a distance x while
keeping the viewing direction the same. To compute an upper bound on
the maximum viewing area, we assume that the cameras are sampled
densely on the camera circle, i.e. β → 0°. Under this assumption, the
viewing rays from Ci intersect the camera circle exactly at a camera,
indicated by a dark green circle. For view synthesis to succeed, the
viewing ray needs to fall within the camera’s field of view. In other
words, the angle δi between the viewing ray and the dark green camera’s

proxy
X δ0 δ1 

δ2 

vφ1 

vφ2 

C0 C1 C2

Fig. 12. Viewing area analysis. Left: The desired camera is at the centre
of the camera circle. The error bar indicates blending performance de-
pending on X and the desired view (CD,rD). Right: The desired camera
is translated from C0 to C1 and C2, while keeping the viewing direction
rD fixed. The angle δi (for i∈{0,1,2}) restricts the viewing area.

Fig. 13. Limitation: our two-view novel-view synthesis fails if the synthe-
sised rays do not reproject into the input camera views.

viewing direction vϕi needs to be less than half the field of view γ , i.e.
δ < γ

2 . We can express the angle δ using δ = arcsin x
r and then solve

for x to obtain

x < r · sin
γ

2
. (12)

Equation 12 provides an upper bound on the radius of the maximum
viewing area, depending only on the radius r of the camera circle
and the camera’s field-of-view γ . Leaving the viewing area produces
artefacts as in Figure 13.

Experimental validation In practice, imprecise capture and narrow-
field-of-view consumer cameras often reduce the available viewing area
compared to the theoretical bound. We measure the actual size of the
viewing area for different datasets in Figure 14. The datasets vary in
terms of their radius r∈ [0.8,1.22] and field of view γ ∈ [40,120], but
also by scene type, e.g. indoors (Office) vs outdoors (Lake).

The left-most set of bars in Figure 14 show the theoretical upper
bound of the viewing area according to Equation 12, and the following
sets of bars show the observed size for different angular baselines
β ∈ [1,24]. The desired camera is translated until the view synthesis
breaks (see Figure 13). We do this in both directions and average both
distances to estimate the radius of the actual viewing area. Our method
relies on β ≤ 2° for best results while the viewing area shrinks quickly
for β > 6°. Rooftop and Lake come close to the theoretical limit, since
the rig capture yields nearly ideal camera paths. Hand-held datasets,
such as Jaman, Street and Office, show much smaller viewing areas due
to less precise capturing. Five out of our six datasets support a viewing
area with a diameter of 50 cm or more, and up to 1.5 m for the Rooftop,
which would be sufficient for exploration in virtual reality while seated.
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Fig. 14. Viewing area comparison: theory versus practice for different
angular baselines β (i.e. subsampled datasets). Note that datasets are
only tested for β larger than in Table 1, i.e. if there are enough views.

9 DISCUSSION AND CONCLUSION

The sampling density of views needed to create high-quality immersive
experiences is scene-dependent and needs to be sufficiently high for
visually optimal results. Better scene understanding would help to
identify critical areas and could lead to more reliable reconstructions.

The data we precompute in Section 5 could be efficiently encoded
into the input video. The optical flow fields, for example, are high-
quality versions of standard motion estimation as employed in video
codecs. Camera calibration data and trajectory information could be
stored in the metadata. This would result in an augmented video file
that is only a small fraction larger than a standard video.



Limitations Our two-view synthesis approach relies on the pair of
cameras actually seeing the proxy point X determined by the desired
ray. This assumption may be violated if input views are slanted away
from the radially-outwards direction (see increasing δ in Figure 12
and example in Figure 13). This issue can be ameliorated using wide-
angle optics to increase the input camera’s field of view. In addition,
as our approach is purely image-based, the captured scene cannot be
edited, but is reproduced as is. The viewing area is currently limited
to a roughly circular region in the 2D plane (see Section 8), which
prevents out-of-plane motions. Our approach treats the desired camera
like a perspective camera during synthesis, but as each pixel is poten-
tially synthesised from a different pair of input views, the synthesised
image combines the perspectives of multiple views. This may result in
distorted scene objects in novel viewpoints (see handrail in Figure 8).
Vertical distortion is known from state-of-the-art omnidirectional tech-
niques [2, 29] and is most noticeable for nearby scene objects, and when
synthesising wide field-of-views. This naturally leads to the question
of what influence vertical distortion has on the user’s viewing comfort,
which requires further study in a perceptual experiment.
Conclusion We presented a new solution for generating and display-
ing high-quality 360° panoramas with motion parallax in real time from
just a single input video. Our method produces convincing, high-quality
results despite not using any explicitly reconstructed proxy geometry.
However, our approach would benefit from the availability of more
accurate proxy geometry, which would help reduce vertical distortion
and increase the viewing area to support 6-degrees-of-freedom head
motions. A computational bottleneck of our approach is the reconstruc-
tion of extrinsic camera geometry, which appears to be particularly
difficult for inside-out captures like ours.
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