
Supplementary material

A Derivation of a counterexample in Sec. 3

Our derivations follow (Girard et al., 2003), who study
GPs with uncertain inputs. Specifically they com-
pute the mean and the variance of f(x⇤), where f ⇠
GP(µ(·), k(·, ·)), and x⇤ ⇠ N (µ⇤,�

2
⇤).

According to Eq. (12) in Girard et al. (2003),
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where Kij = k(zi, zj) is a kernel matrix at inducing lo-
cations. Assuming for simplicity a squared-exponential
kernel k(x, x0) = exp((x � x

0)2/2�2), and a single in-
ducing point (z, u), K becomes a scalar, K = 1. The
matrix Q in the equation above has as many rows and
columns as there are inducing points, meaning that un-
der our assumptions, Q is a scalar given by the following
equation:
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The term � in (25) is defined as � = K�1u, which
equals zero assuming that the single inducing point u is
equal to zero.

In summary, under our assumptions,

v(µ⇤,�
2
⇤) := Var [f(x⇤)] = 1�Q. (26)

The derivative of (26) w.r.t. �2
⇤ is as follows
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Evaluating this derivative at �2
⇤ = 0, we obtain
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From the above equation it is easy to see that
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In other words, if the input mean is sufficiently far away
from the inducing point (in relation to the length scale),
i.e. � <

p
2|u � µ⇤|, adding input noise may reduce the

output uncertainty.

B Analytic marginalisation of jointly
Gaussian inducing points

In this section, we provide the derivation of the varia-
tional distribution with analytically marginalised induc-
ing points that have a joint Gaussian distribution, as de-
scribed in Sec. 4.1. We first derive the result for a 2-layer
case and then discuss a way to generalise beyond two
layers.

We consider jointly Gaussian inducing points as
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and a joint variational distribution of a two-layer DGP
(suppressing the dependence on the inducing locations
z1 in the notation) is

q(f2,u2, f1,u1) = p(f2 | u2, f1)q(u2 | u1)

p(f1 | u1,x)q(u1).
(28)

The goal is to integrate u1 and u2 out from (28) in order
to fit the model without sampling the inducing points.
The following derivations are based on the argument that
the mean of Fi is a linear transformation of Ui, and vice
versa.

Assume that q(u1) ⇠ N (m1, S11) and p(f1 | x) ⇠
N (µ̃1, ⌃̃1) with

µ̃1 = µ1(x) + ↵1(x)
T (m1 � µ1(z0)),
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where ↵1(x) = K1(z0, z0)�1

K1(z0,x). We
can compute the joint distribution q(u1, f1 | x) =
q(u1)p(f1 | u1,x) using a standard result6 for a linear
model with a Gaussian prior and likelihood (in the fol-
lowing we will be referring to this result as (⇤)) as fol-
lows:
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(30)
From this we can swap u1 and f1 in the conditional dis-

6See, for example, Section 4 in https:
//davidrosenberg.github.io/mlcourse/
in-prep/multivariate-gaussian.pdf.



tribution by computing
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Now we can integrate u1 from (28) by applying (*)
again, obtaining

q(f2,u2, f1) = p(f2 | u2, f1)q(u2 | f1)p(f1 | x), (32)
where (33)
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Another application of (*) allows us to integrate u2 from
(33) obtaining joint distribution of intermediate layers
q(f2, f1 | x) = q(f2 | f1)q(f1 | x) with q(f2 | f1) =
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This result can be generalised to more than two
layers, starting with q(fi|fi�1, ..., f1) ⇠ N(µi,⌃i),
and repeating the steps outlined above to arrive at
q(fi+1|fi, fi�1, ..., f1), parameters of which can be de-
duced by replacing the indices for the first layer with
indices for the ith layer in (34). This leads to the result
given in (16) and (17).

C Implementation

Our implementations for the approaches discussed in
Sec. 4.1 and Sec. 4.2 are built on the Tensorflow (Abadi
et al., 2015) and the Tensorflow Probability (Dillon et al.,
2017) libraries.

D Alignment task

Another example of a task that calls for an explicit repre-
sentation of the constituent functions is the task of align-
ing temporal sequences (Kaiser et al., 2018; Kazlauskaite
et al., 2019). Consider a set of sequences {yj}Jj=1 where
each sequence yj 2 RN is observed at fixed inputs
x 2 RN that typically correspond to time. It is known
that the observed sequences were generated by tempo-
rally warping the inputs x as follows:

yj = fj(gj(x)) + ✏j (35)

where gj(·) is the temporal warping, fj(·) is the latent
function that encodes the structure of the observed se-
quence (that is not corrupted by the temporal warping)
and ✏j ⇠ N (0,�2

j ) is the observation noise. Given this
construction, prior knowledge may be imposed on the
two functions that make up the model; for example, the
temporal warps are typically constrained to be mono-
tonic increasing to ensure that the order of observations
is preserved, while the latent functions may be described
using a Gaussian process prior with an appropriate kernel
that represent our beliefs about the features of these func-
tions. The goal in an alignment task is to learn the model
of the data as defined in (35) such that the latent func-
tions {fj} for all J sequences are as similar as possible,
i.e. we are interested in such a composition of the func-
tions fj and gj such that

PJ
i=1

PJ
k=i+1(fi(x)� fk(x))

(the pairwise distance between the latent functions) is as
small as possible given the prior assumptions on {fj}
and {gj}. The composition in (35) can be expressed us-
ing a two-layer DGP with appropriate priors (for a de-
tailed description of imposing monotonicity constraints,
see (Ustyuzhaninov et al., 2020)).

Consider a set of 3 sequences generated using a sinc
function in the range [�1, 1] that need to be aligned.
Fig. D1 illustrates how correlations between layers allow
us to uncover a set of solutions, as opposed to a point
estimate of the warping and the latent functions reported
in (Kazlauskaite et al., 2019).

Some additional correlations need to be introduced into
the alignment model to ensure that any given sample of
the 3 latent functions fj(x), j = 1, 2, 3 at fixed inputs
x are consistent (otherwise, the solution collapses to a
single latent function for all sequences which is at odds
with our goal of finding a range of possible solutions). In
this example, the additional correlations are introduced
by jointly sampling the inducing points that define the
first layer of the composition.

E Additional numerical simulations

In this section we provide additional examples (Fig. E1
to E6) of 3-layer DGP fits to two functions, a sine and
an identity function. Similar to Fig. 5, we fit a DGP to
both functions using three variational inference schemes
based on a factorised variational distribution of induc-
ing points (DSVI), jointly Gaussian inducing points of
Sec. 4.1, and the distribution discussed in Sec. 4.2.



Observations Factorised variational distributions (Kazlauskaite et al., 2019) 
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Figure D1: Alignment task. The top left figure shows the observed data that needs to be aligned. The two rows on the
right show the alignment used in Kazlauskaite et al. (2019), that provides a point estimate of the solution (top row),
and the alignment using a probabilistic model with correlated warping functions and latent functions (bottom row).



�1 0 1

�1

0

1

x

f1(x)

�1 0 1

�1

0

1

x

f2(x)

�1 0 1

�1

0

1

x

f3(x)

�1 0 1

�1

0

1

x

f2 � f1(x)

�1 0 1

�1

0

1

x

f3 � f2 � f1(x)

Figure E1: Example fits of a three-layer DGP with factorised inducing points to a data set shown in the rightmost panel
(black dots). Different panels show the computations performed by each of the three layers and their compositions.
Different colours correspond to three models fitted to the same data with different random initialisations. For each
initialisation, ten samples (of the same colour) from the fitted model are shown on top of each other.
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Figure E2: Example fits of a three-layer DGP with jointly Gaussian inducing points (Sec. 4.1). The figure arrangement
is the same as in Fig. E1.
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Figure E3: Example fits of a three-layer DGP with inducing points as inducing locations (Sec. 4.2). The figure
arrangement is the same as in Fig. E1
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Figure E4: Example fits of a three-layer DGP with factorised inducing points to a data set shown in the rightmost panel
(black dots). Different panels show the computations performed by each of the three layers and their compositions.
Different colours correspond to three models fitted to the same data with different random initialisations. For each
initialisation, ten samples (of the same colour) from the fitted model are shown on top of each other.
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Figure E5: Example fits of a three-layer DGP with jointly Gaussian inducing points (Sec. 4.1). The figure arrangement
is the same as in Fig. E4.
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Figure E6: Example fits of a three-layer DGP with inducing points as inducing locations (Sec. 4.2). The figure
arrangement is the same as in Fig. E4
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