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A. Numerical Approximation of Final Cost Function
For the sake of what follows, we assume that we are working with an exact marginal likelihood given by

p̂(u | ttt, T ) = fu ?Nσ2(ttt)+γ2

(
T ◦ µd(ttt)

)
. (1)

We approximate the marginal likelihood with the approximate marginal likelihood given by

p̃(u | ttt, T ) = exp

(
−
∑D−1
d=0 Vu

(
T ◦ µd(ttt)

)
1 + σ2(ttt) + γ2

)
. (2)

Both of these expressions form a scalar field evaluated on the on the image lattice X that is generated from a distance
transform operation from some edge discriminator output. During model adaptation, we seek to find the pose parameters T
and shape parameters ttt that generate curve coordinates that sit on some maxima of these scalar fields. We therefore need
the approximate marginal likelihood in equation (2) to preserve the local maxima of the marginal likelihood of equation (1).
We empirically verify that this is true in Figure 1, where we show values of these two scalar fields at horizontal slices when
σ2(ttt) = 9 and γ = 4.

B. Effect of Posterior Shape Variance
Recall that the final objective function is given by

E0(ttt, T ) =

D−1∑
d=0

Vu(T ◦ µd(ttt)) + σ2(ttt) , (3)

We wish to investigate the effect of the posterior shape variance and for this purpose, we also adapt the ALSSM by minimising
the following cost function

E1(ttt, T ) = E0(ttt, T )− σ2(ttt) . (4)

We show the results for this minimisation and compare it to the former in Figures 2 and 3. The role of the the posterior shape
variance regulariser is to keep shape examples close to the GPLVM training data examples, where the posteior shape variance
would be low. At dimension Q = 2, we see that using the regulariser results in a lower accuracy. This is because, for low
latent space dimensions, latent space positions close to the dataset do not exhibit a rich enough shape variation. At higher
dimensions, the latent space is able to generate a richer shape variety at positions close to training data and hence fits better
to the true curve outline.
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Figure 1. The Figures show slices of the scalar fields induced on the image lattice X by the marginal likelihood given by equation (1) and
the approximate marginal likelihood given by equation (2).

C. U-net Architecture for Building the Potential Function Vu(·)
We train a U-net bone region discriminator on cropped radiographs as shown in Figure 4. We use tensorflow 1.9 for the

implementation with a momentum optimizer and we train the architecture for 200 epochs on a dataset of 101 images split
into a 80:20 training to test ratio. The batch-size used is 1 so that the architecture can be trained on full sized images without
having to resize. We use a momentum optimiser with a momentum of 0.8 and a exponentially decaying learning rate with
initial learning rate of 0.01 and a decay rate of 0.95. This combination of momentum optimizer with a high momentum value
on small batches has been shown to work well [3].

D. Radial Basis Function Interpolation
The rest of this supplement is taken from Sections 3.4 and 6.3.3 found in Rambojun et al. [2]. Consider a function

f : Ω ⊂ Rn → R which we wish to approximate using Radial Basis Functions, where n ∈ N,

ψh(xxx) =
1√

2πv2
exp

(
−‖x

xx−Xh‖2

2v2

)
. (5)
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Figure 2. Results for the average L-2 error between the model generated bone outline and the true bone outline against the dimension Q of
the GPLVM (ARD kernel) latent space in a 10-fold validation. We compare the performance of three edge potential functions; one built
by a U-net discriminator (unet), one built using a hessian based edge finder (hessian) and finally by using the true bone outline to build
the potential (true). We also investigate the effect of the posterior shape variance on the result by minimising equation (4) (top row) and
equation (3) (bottom row) while fitting the model.

Figure 3. Results for the average error between the model generated joint space width and the true joint space width against the dimension
Q of the GPLVM (ARD kernel) latent space in a 10-fold validation. We compare the performance of three edge potential functions; one
built by a U-net discriminator (unet), one built using a hessian based edge finder (hessian) and finally by using the true bone outline to
build the potential (true). We also investigate the effect of the posterior shape variance on the result by minimising equation (4) (top row)
and equation (3) (bottom row) while fitting the model.
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Figure 4. The figure shows the U-net architecture used. Each pooling operation halves the dimensions of its input while each deconvolution
layer doubles the dimensions of its input. The training is done for 200 epochs on bacthes of size 1 with a momentum optimizer having
momentum of 0.8; and an exponentially decaying learning rate with initial value of 0.01 and decay rate of 0.95.

We assume that we know the value of the function f over a set S := {X0, ...,XH−1 : Xi 6= Xj∀i 6= j}. Usually, interpolating
f using ψh would require us to solve the system given by

ψ0 (X0) . . . ψH−1 (X0)
. . .
. . .
. . .

ψ0 (XH−1) . . . ψH−1 (XH−1)




w0

.

.

.
wH−1

 =


f(X0)
.
.
.

f(XH−1)

 . (6)

The interpolant will then be given by

If (xxx) =

H−1∑
h=0

wh√
2πv2

exp

(
−‖x

xx−Xh‖2

2v2

)
. (7)

D.1. Interpolation Error Estimate

In Interpolation Theory one is interested in controlling the maximum difference between the interpolant and the function
f within a bounded domain Ω, i.e, one wants to bound maxx∈Ω |f(xxx) − If (xxx)|. We have the following Lemma from
Frohlich [1]:

Lemma D.1. Let Ω be a cube in Rd and let If be the radial basis function interpolant through a set S := {X0, ...,XH−1} ⊂
Ω of a smooth, differentiable function f . Then we have that

max
x∈Ω
|f(xxx)− If (xxx)| ≤ exp

(
− log(hΩ,S)

hΩ,S

)
‖f‖ψ,Ω

where

‖f‖2ψ,Ω =
1

(
√

2π)d

∫
Ω

f̂2(ω)

Îf (ω)
dω

is constant with Where f̂ and Îf denote the Fourier transform of f and If respectively, and

hΩ,S := sup
xxx∈Ω

min
X∈S
‖xxx−X‖2

What interests us in Lemma D.1 is the behaviour of hΩ,S .

Lemma D.2. There exists a sequence Si s.t. limi→∞ hΩ,Si = 0
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Proof. Consider a general S. We define the following subset of Ω

Bh(S) = {xxx ∈ Ω : ‖xxx−Xh‖2 = min
X∈S
‖xxx−X‖2} (8)

which contains all the elements of Ω which is in the maximum range of some Xh ∈ S. This often referred to as the Voronoi
Cell associated with the site Xh. We set

‖Bh(S)‖ := sup
x∈Bh

‖Xh − xxx‖ . (9)

Then we have that
hΩ,S = max

h=0,..,H−1
‖Bh(S)‖ . (10)

We define a neighbourhood structure on the elements of S. Let Xh ∈ S. Then Xk ∈ S is a neighbour of Xh if there exists a
curvemmm : [0, 1] → Rd withmmm(0) = Xh andmmm(1) = Xk s.t. mmm ∩ Bh ∩ Bk = mmm. Equivalently, Xh ∼ Xk if Bk ∩ Bh 6= ∅.
Let di = maxp∼q∈Si ‖X − qqq‖. Consider now Xh ∼ Xk. From the definition of a Voronoi cell we have that for xxx ∈ Bk(Si)
and yyy ∈ Bk(Si) ∪ {Xk},

‖Xk − xxx‖ < ‖Xh − yyy‖
setting yyy = Xk
< di ⇒

‖Bk(Si)‖ < di

(11)

For each such pair of neighbours, we choose a curve such that ‖mmm‖2 = ‖Xh − Xk‖2 and pick a point halfway on the
curve. We construct Si+1 to be the union of Si and the points that we just created out of the neighbouring structure of Si.

As Ω is a box in Rd, we can define S0 to be the set of points lying on the corners of Ω. Under the above construction rule,
the new points are added on lines joining adjacent elements of S0, as illustrated below.

S0

B0(S0)B1(S0)

B2(S0)B3(S0)

B0(S0)B1(S0)

B2(S0)B3(S0)

S1

In fact, with S0 described above, Bh(Si) is a square domain for every l and every i and each new point is added on the
corners of Bh(Si). For such a construction, we have that d0 is the distance between diagonal neighbours. Moreover, for all
p ∈ S0 we have that:

d0 = max
q:q∼p∈S0

‖X − qqq‖2 .

As we are adding new points that lie halfway between neighbours we necessarily have that di+1 = 1
2di yielding

‖Bh(Si)‖ ≤
1

2i
d0 ∀l⇒ hΩ,Si ≤

1

2i
d0 . (12)

Hence we have created a sequence whose limit is zero as i goes to infinity.
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E. Marginalisation Error Estimate
Let

fu : Ω ⊆ R2 → R
xxx 7→ exp(−Vu(xxx))

be compactly supported and let I be the interpolant described in equation (7). Let

hΩ,S := sup
xxx∈Ω

min
X∈S
‖xxx−X‖2

where S is the set of interpolating nodes {X0, ...,XH−1}. We have the following bound from Frohlich [1]

max
xxx∈Ω

∣∣I(xxx)− f(xxx)
∣∣ ≤ exp

(
− log(hΩ,S)

hΩ,S

)
(13)

We use this bound to show

(a) that an integral involving the product of fu and a Gaussian can be approximated by an integral involving the product of
I and the same Gaussian (see equation (14))

(b) that a convolution of fu with a Gaussian can be approximated by a convolution of I with the same Gaussian (see equation
(15)).

Together with Lemma D.2, this shows that the approximation we make for the marginalisation of model parameters has
an error that goes to zero as the image resolution goes to infinity. The error bounds are∣∣∣∣ ∫

Ω

I(xxx)N (xxx) dxxx−
∫

Ω

f(xxx)N (xxx) dxxx
∣∣∣∣

≤
∫

Ω

∣∣ (I(xxx)− f(xxx))N (xxx)
∣∣dxxx

≤max
xxx∈Ω

∣∣I(xxx)− f(xxx)
∣∣ ∫

Ω

N (xxx) dxxx

using Holder’s inequality

≤C exp

(
− log(hΩ,S)

hΩ,S

)
(14)

and ∣∣∣∣f ?N (yyy)− I ?N (yyy)

∣∣∣∣
=

∣∣∣∣ ∫
Ω

I(xxx)N (xxx− yyy) dxxx−
∫

Ω

f(xxx)N (xxx− yyy) dxxx
∣∣∣∣

≤
∫

Ω

∣∣ (I(xxx)− f(xxx))N (xxx− yyy)
∣∣dxxx

≤max
xxx∈Ω

∣∣I(xxx)− f(xxx)
∣∣ ∫

Ω

N (xxx− yyy) dxxx

using Holder’s inequality

≤C exp

(
− log(hΩ,S)

hΩ,S

)

(15)

where C is a constant depending on f and whose form is given in Lemma D.1. The error estimates for the RBF interpolation
of fu rely heavily on its compact support, which is guaranteed to hold for an image closed image lattice.
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Remark E.1. Frohlich [1] requires that the function to be interpolated lies in the so call native space of the interpolant. For
our purposes, fu needs to to satisfy ∫

Ω

f̂u
2
(ω)

Î(ω)
dω ∈ R .

We hence require that the Fourier transform of fu decays at most as fast as that of a Gaussian. Let Ω be a square bounded
domain on R2 and let Γ ⊂ R2 be the boundary of some open set in Ω. Define Vu to be given by

Vu(xxx) = min
yyy∈Γ
‖xxx− yyy‖ . (16)

Then for

fu :R2 → R
xxx 7→ exp(−Vu(xxx))

(17)

we have that fu behaves like a Gaussian at its tails. This ensures that the Fourier transform decays like a Gaussian at infinity,
gauranteeing that fu lies in the Native space of the RBF interpolant.
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