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“breaking the ubiquitous ML assumption in image and vision computing that errors and
uncertainties at neighbouring pixels are independent, despite their demonstrable spatial
structure”



Is unsupervised learning a thing?




Overview...
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Unsupervised learning — generative models

Figure 1: Stable Diffusion: “The manifold of cats.”
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Unsupervised learning — generative models

+ “Find me some p(z) and f(z) such that
x ~ f(z) when z ~ p(z).”
- This has trivial solutions
- Need constraints
- Utility +» use-case
- Generative models as priors

Figure 1: Stable Diffusion: “The manifold of cats.”
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Inverse problem setup

- Inverse problemy = Ax + ¢ for some forward model A : X — ) and noise ¢

- Variational regularisation framework (for some similarity D(-, -))

x* € arg mg/ryl D(y, Ax)+ A R(x)

- Regulariser from an explicit prior distribution, R(x) := log p(x|8)

- x* considered a MAP estimate if D(y, Ax) :=logp(y|f(Ax),...)



Deep learning approaches for inverse problems
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Generative models




Is unsupervised learning a thing?

Generative models

Structured Uncertainty Prediction Networks (SUPN)
SUPN as a prior for inverse problems
Non-Gaussian likelihoods

Thanks!



Generative model zoo
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Unreasonable expectations of generative models?

e.g. VAE with:
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Figure 2: How many degrees of freedom are there in the image?



Properties we would like

- Span the data space
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Properties we would like

- Span the data space

- Representative samples

- Conditions on mapping
(e.g. “smooth”)

- Evaluate densities (e.g. take
likelihood)
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Properties we would like

- Span the data space

VAE Generator
- Representative samples ® (@) (ceneror | G @ ‘ @ @ ®
- Conditions on mapping GAN @

(e.g. “smooth”) Normalising Flow

- Evaluate densities (e.g. take fol) k()
e O g | @~ )| g | @
likelihood)

- Uncertainty (e.g. account for Diffusion/Score

failure to model) ) - @ Fto2(6) - @

- Introspection




Structured Uncertainty Prediction
Networks (SUPN)




Overview...

Structured Uncertainty Prediction Networks (SUPN)



“VAEs produce overly smooth output”
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“VAEs produce overly smooth output”
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“VAEs produce overly smooth output”
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Problem! Dense covariance O(N?)...

- Problem: ¢ (z) is quadratic in the number of pixels

- Solution: Sparse parameterisation of the Cholesky factor of the precision

S(z) == [A(z)] ' = [La(z) LY (2)]

. Sparsity in the Sparsity in the
Neighbourhood o o )
precision Cholesky precision matrix

in image domain
¢ matrix Ly A(z) = X7 Y(2)



- Sparse parameterisation of the Cholesky factor of the precision

S(z) = [A(2)] "' = [La(2) Li(2)]
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Figure 3: Implementation through convolutional structure: matrix-vector product in O(N)



Examples of samples
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Figure 4: Variation in samples from the model on test data




Introspection of the captured covariance structure
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Figure 5: Visualisation of the learned correlations



Links to established concepts...

- Links to Conditional Random Field (CRF) models

- a Gaussian CRF - e.g. “Regression Tree Fields” [Jancsary et al. 2012]
- Links to adaptive local regularisation models

- e.g locally adaptive TV or Laplacian based methods

- Links to Wavelet approaches
- considering hierarchical extensions or combining fixed basis functions



Links to established concepts...

- Links to Conditional Random Field (CRF) models
- a Gaussian CRF - e.g. “Regression Tree Fields” [Jancsary et al. 2012]
- Links to adaptive local regularisation models
- e.g locally adaptive TV or Laplacian based methods
- Links to Wavelet approaches
- considering hierarchical extensions or combining fixed basis functions

- Things to be careful about
- priors on sparse precision (consider Cholesky structure)
- need to bound terms
- lots to say about these things...



Testing with denoising...

Denoised

Input @ £
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2% residual
Model MSE PSNR SSIM
DAE 0.005 + 0.003 28.89 4+ 1.69 0.90 £ 0.03
SUPN 0.003 £+ 0.001 31.38 + 0.92 0.92 + 0.02

Figure 6: Denoising example using SUPN (vs a denoising autoencoder). The SUPN model has only
been trained as in a generative manner (i.e. as a prior).



Testing with denoising...

Original Input Mean Noisy Proj. Ours DAE
image residual residual
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- Consider a hierarchical model for the inverse problem

p(x,2|y) x p(y|x) pg(x|2) pz(2)
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SUPN as a prior for inverse problems

- Consider a hierarchical model for the inverse problem

p(x,z|y) o< p(y|x) pg(x|z) pz(2)
- We will take a MAP estimate for z rather than marginalising : -(
- From before (with a Gaussian observation likelihood) and pz(z) ~ N (0, 1)

D(y, Ax) = —||Ax — y|3

1
252!
R(x) := min log|¥y(z)| +}HX—,U,9(Z)H2 +1HZH2
z€Z 2 Zo(z) T 21712
- Where the Generator provides N (x| ug(z), X(2)) via a network [u, Lp] = f(z;6)
and ||a||% := a’ %=1 a denotes a Gaussian weighted norm

- Note: the network still outputs O(N) values and evaluation of R(x) can be
performed in O(N) time using L for the first two terms
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Proof of concept example: NYU fastMRI knee dataset

- Task inspired by the single-coil reconstruction
- Compressed sensing task (progressively reducing the amount of data measured)

- Initialise with z(®) using the encoding of a rough reconstruction, given by the adjoint
of the forward operator, and the corresponding mean output for x(0)

- Can also estimate the uncertainty (e.g. by sampling through)



FastMRI knee learned prior covariance...

Real (top) and complex (bottom) channels of the learned prior.

Left to right: True Image, Mean, Prior Residual Sample, Pixelwise Correlations



Compressed sensing reconstruction results

Prior Residual Prior pixelwise correlation Prior mean Prior sample True image

Posterior Residual Posterior pixelwise correlation Posterior mean Posterior sample Zero-filled reconstruction




Compressed sensing reconstruction results

Prior Residual Prior pixelwise correlation Prior mean Prior sample True image

Posterior pixelwise correlation Posterior mean Posterior sample Zero-filled reconstruction
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Comparison vs supervised reconstruction method
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Figure 13: Comparison with the supervised variational networks [Hammernik et al. 2018]. The

vertical lines depict the experimental settings the variational networks were trained on.




DPS

Ours

183Y %S'C x3|dwo) %S5'Z 183d %01 x3|dwod %0t



Open challenges

- Nice introspection but what about dataset bias?
- Convergence rates (e.g. looking at natural gradients)

- Convexity/uniqueness

- Assumption that “ground truth” data available



Uncertainty in Computer Vision!

3rd Workshop on Uncertainty Quantification
for Computer Vision

ECCV 2024 Workshop

About Call for Papers Accepted Papers Program

In the last decade, substantial progress has been made w.rit. the performance of computer vision systems, a significant
part of it thanks to deep learning. These advancements prompted sharp community growth and a rise in industrial
investment. However, most current models lack the ability to reason about the confidence of their predictions; integrating
uncertainty quantification into vision systems will help recognize failure scenarios and enable robust applications.

In addition to advances in Bayesian deep learning, providing practical approaches for vision problems, the workshop will
provide a forum for discussing promising research directions, which have received less attention, as well as advancing
current practices to drive future research. Examples include: the development of new metrics that reflect the real-world
need for uncertainty when using vision systems with down-stream tasks; and moving beyond point-estimates to address
the multi-modal ambiguities inherent in many vision tasks.

This years UNcertainty quantification for Computer Vision (UNCV) Workshop aims to raise awareness and generate
discussion regarding how predictive uncertainty can, and should, be effectively incorporated into models within the vision
community. The workshop will bring together experts from machine learning and computer vision to create a new
generation of well-calibrated and effective methods that know when they do not know.



Non-Gaussian likelihoods




Overview...

Non-Gaussian likelihoods



“Learning Structured Gaussians to Approximate Deep Ensembles”

M Sample 1
5 = M Sample 2

M Sample N

Figure 14: Use the structured Gaussian approach for “ensemble distillation”; approximate the
output from a deep ensemble [Poggi et al. 2020, Lakshminarayanan et al. 2017]

[Simpson et al. 2022]



Non-Gaussian likelihood

- Use a link function to change to different likelihood (e.g. a depth range through logits)

- Training from ensemble outputs using log-likelihood

- Output distribution captures epistemic and aleatoric uncertainty (via the ensemble)
Advantages

- Efficiency improvement

- Ability to draw unlimited samples
- Introspection

- Conditional sampling



Accuracy Comparison: Ensemble.| p—{ | |—mmomo o

The approximation captures RMSE Mean ]
the original ensemble well SUPN fours)y ° °e°°

0 5 10 15

Uncertainty Metrics:

. . Model name RMSE AUSE | |RMSE AURG 1 |LL x10° T
Pixelwise Area Under the

Sparsification Error, Area Ehsemble [6] |2.927 (1.327) 0.324 (1.019)
Under the Random Gain Dlagonal 5.075 (1 924) -1.697 (0799) 1.77 (1 1 48)
and the Log-Likelihood SUPN 1.555 (1.307) 1.856 (1.355) 40.60 ( 1.35)

Figure 15: Monocular depth estimation results vs the original ensemble



Samples

SUPN mean

Ensemble samples SUPN samples




Samples

SUPN mean

Ensemble samples SUPN samples







Introspection




Conditional sampling

Mean

Cond
Mean

Figure 16: We can also perform conditional sampling using efficient sparse precision operations

p(dy|dk = ) ~ N (b, B)
b= py — Ayt Au (e — ), B == Aj}



Thanks!




Thanks! https:/ /www.ndfcampbell.org neill.campbell@ucl.ac.uk
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