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Common Questions?

What questions do we have about ML?

• Can I use ML to solve x?
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• Surely Deep Learning/Generative AI/ChatGPT is all hype?
• Can any of this be used for science/engineering?
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Things to consider..

• Are all datasets equal or how to choose your data?

• Gotchas: What Machine Learning can and can’t do for you.
• Average vs worst case Machine Learning
• Machine Learning and Causality
• Trade-offs in Machine Learning
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Machine Learning illustration

Neural Network Playground:
• https://playground.tensorflow.org/

https://playground.tensorflow.org/
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Machine Learning illustration

What if we use a probabilistic approach?



We need to consider properties of
Machine Learning approaches
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Average vs Worst Case..

0.0 0.2 0.4 0.6 0.8 1.0
Input Data x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ou
tp

ut
 D

at
a 

y

Data
Estimated Function



Average vs Worst Case..

0.0 0.2 0.4 0.6 0.8 1.0
Input Data x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ou
tp

ut
 D

at
a 

y

Data
Estimated Function



Average vs Worst Case..

0.0 0.2 0.4 0.6 0.8 1.0
Input Data x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ou
tp

ut
 D

at
a 

y

Data
Estimated Function



Average vs Worst Case..

0.0 0.2 0.4 0.6 0.8 1.0
Input Data x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ou
tp

ut
 D

at
a 

y

Data
Estimated Function



Average vs Worst Case..

0.0 0.2 0.4 0.6 0.8 1.0
Input Data x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ou
tp

ut
 D

at
a 

y

Data
Estimated Function



Average vs Worst Case: Failure to model..
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Average vs Worst Case: Explicitly accounting for imbalance..
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No free lunch (more realistic)
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Understanding Deep Learning

Excellent new text book from Simon Prince (visiting Prof in Bath for semester 1):

Understanding Deep Learning, Simon J.D. Prince, MIT Press

Final draft available on the website: https://udlbook.github.io/udlbook/
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Bayesian Machine Learning

• Bayes’ Rule

Posterior Probability (after) = Likelihood (of event) × Prior Probability (before)
Evidence



Example of Bayes’ Rule..

• Consider a legal trial..

p(guilt | observations)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
p(observations | guilt) ×

Prior︷ ︸︸ ︷
p(guilt)

p(observations)︸ ︷︷ ︸
Evidence

p(A | B) means “probability of A being the case given that B occurs”
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Monty Hall: How would we generate data (or simulate)?

1 door_with_car = pick_random({1, 2, 3})
2 door_with_goat = {1, 2, 3} - door_with_car
3
4 door_picked = pick_random({1, 2, 3})
5
6 if door_picked == door_with_car:
7 door_to_open = pick_random(door_with_goat)
8 else:
9 door_to_open = door_with_goat - door_picked
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Monty Hall: How would we generate data (or simulate)?

1 door_with_car = pick_random({1, 2, 3}) # 1/3 equal chance
2 door_with_goat = {1, 2, 3} - door_with_car
3
4 door_picked = pick_random({1, 2, 3}) # 1/3 equal chance
5
6 if door_picked == door_with_car:
7 door_to_open = pick_random(door_with_goat) # 1 times in 3
8 else:
9 door_to_open = door_with_goat - door_picked # 2 times in 3



Consider Modelling and ML as a
Generative Process



Bayes’ Rule with models and functions..

p(functions | observed data)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
p(observed data | functions) ×

Prior︷ ︸︸ ︷
p(functions)

p(observed data)︸ ︷︷ ︸
Evidence

p(f | D)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
p(D | f) ×

Prior︷︸︸︷
p(f)

p(D)︸ ︷︷ ︸
Evidence

p(D) =
∑

f

p(D | f) p(f)

Data D = {X, Y }, pairs of inputs {xn} and outputs {yn}, and functions f

Average over functions to predict unknown output y∗ for a new input x∗:

p(y∗ | x∗, D) =
∑

f

p(y∗ | x∗, f) p(f | D)
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Prior over functions…
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Combine prior with data…
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Combine prior with data…
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Average over functions to predict…
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Averaging over functions gives us (Epistemic) Uncertainty!
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Model selection

• How much data do we need?
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• What can we actually say?
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Science (and Machine Learning) cannot
prove things to be true via data

we can only demonstrate that things
are inconsistent with data
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Bayes’ Rule for model selection..

p(w | D)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
p(D | w) ×

Prior︷ ︸︸ ︷
p(w)

p(D)︸ ︷︷ ︸
Evidence

Data D = {X, Y }, input/output pairs, and parameters w
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Data D = {X, Y }, input/output pairs, and parameters w for Model M = m
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If prior over models is equal, we compare via the Evidence for the Model: p(D | M = m)



Model selection example

Fitting polynomial models to data under Gaussian noise, εn ∼ N (0, σ2):

Model 1 : yn = a0 + a1xn + εn

Model 2 : yn = a0 + a1xn + a2x2 + εn

Model 3 : yn = a0 + a1xn + a2x2 + a3x3 + εn

Model 4 : yn = a0 + a1xn + a2x2 + a3x3 + a4x4 + εn

Model 5 : yn = a0 + a1xn + a2x2 + a3x3 + a4x4 + a5x5 + εn

Parameters wm = [a0, . . . , am] for model m, where m ∈ [1, . . . , 5].



Model selection example



Model selection example (more noise)



Causality
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Causality

Correlation is not Causation
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Danger Batman..

The number of movies Nicolas Cage appeared in
correlates with

The number of MRI technicians in North Dakota

The number of movies Nicolas Cage appeared in · Source: The Movie DB

BLS estimate of magnetic resonance imaging technologists in North Dakota ·
Source: Bureau of Larbor Statistics

2012-2022, r=0.871, r²=0.759, p<0.01 · tylervigen.com/spurious/correlation/6002
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Danger Batman..

Bachelor's degrees awarded in Engineering
correlates with

Electricity generation in Cambodia

Bachelor's degrees conferred by postsecondary institutions, in field of
study: Engineering · Source: National Center for Education Statistics

Total electricity generation in Cambodia in billion kWh · Source: Energy
Information Administration

2012-2021, r=0.997, r²=0.994, p<0.01 · tylervigen.com/spurious/correlation/2716
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Correlation vs Causation: What’s the difference?

• Well we all know what the difference is..
• e.g. Atmospheric pressure and barometer needle reading

Formal definitions tricky but:
An object is the cause of another …

“if the first object had not been, the second never had existed”

[David Hume, Enquiry Concerning Human Understanding, 1748]

• Introduces the idea of a counterfactual
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• Real world:
ACTION → OUTCOME

• Hypothetical world:
COUNTERFACUTAL ACTION → COUNTERFACTUAL OUTCOME

• Difference in outcome = effect of the action!
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So we are all done?

Problems with counterfactuals..
• We never get to observe the counterfactual :-(

• Could the counterfactual possibily occur?

• All the time inside our heads!
• What if I’d bought some tasty chocolates for Neill?

• Philosophical difficulties/objections..

• Can we approximate the counterfactual?

• Lots of the time in science → the Randomised Control Trial (RCT)!

• Exciting question: what if we can’t do RCT?

• Can we use ML to estimate the counterfactuals? Possibly!
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Causality

• Statistical/Probabilistic reasoning alone cannot support causal inference
• Determining the joint probability distribution of variables says nothing about
causation

• Causal Inference: promises to determine the necessary set of (non-data)
assumptions sufficient to make a causal conclusion

[Thanks to Julian Faraway for Causal Illustrations]
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Conclusions

Did we answer any of the questions?

• Can I use ML to solve x?
• What does ML actually do?
• Isn’t ML just the same as y?
• Can I replace myself/my research team with ML?
• How much data do I need?
• Can I just use Deep Learning/Generative AI/ChatGPT?
• Surely Deep Learning/Generative AI/ChatGPT is all hype?
• Can any of this be used for science/engineering?



Conclusions

Need to think about what we really want..

• Computationally efficient look-up table
• e.g. have loads of data that spans the space
• Could use deep learning

• Need data efficiency / care about uncertainty
• e.g. clinical/safety applications
• Need a Bayesian method

• Want to analyse scientific results
• e.g. does my new model explain dark matter
• Need causal inference
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Conclusions

Loads of gotchas..

• Availability (using the data you have not the data you need)
• Evaluation measure (is a human baseline sensible?)
• Ignore uncertainty/error bars
• Sample / dataset bias
• Bias / variance trade-off
• Haven’t spoken about Decision Theory
• Lots to talk about regarding Causality
• “All models are wrong but some models are useful”
• …



That’s all folks..



AI Talks: AI & ML Research Group, Department of Computer Science

11 Oct 2023 Prof Simon Prince

Understanding Deep Learning: The Technology Behind Modern AI

15 Nov 2023 Prof Nello Cristianini

The Shortcut: How Machines Became Intelligent Without Thinking in a Human Way

13 Dec 2023 Prof Mike Tipping

The Irresistible Rise of Machine Learning

28 Feb 2024 Prof Neill Campbell

No Free Lunches in Machine Learning

20 Mar 2024 Prof Özgür Şimşek

Reinforcement Learning and the Pursuit of Artificial Intelligence

17 Apr 2024 Dr Harish Tayyar Madabushi

Emergent Abilities of Language Models: Do they pose an existential threat?

8 May 2024 Prof Darren Cosker

AI for Human Sensing: Research, Productisation and Ethics

TBD Prof Mike Tipping

Bayesian Inference in Machine Learning: Indistinguishable from Magic?
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