No Free Lunches in Machine Learning

Neill Campbell
February 2024

Department of Computer Science, University of Bath
Slide input credits: Carl Henrik Ek, Javier González, Simon Prince, Julian Faraway

CAMERA
Contre for the Analysis of Motion
Eviertoinment Reseach ond Applicotion

Al Talks: AI \& ML Research Group, Department of Computer Science

11 Oct 2023 Prof Simon Prince
Understanding Deep Learning: The Technology Behind Modern AI
15 Nov 2023 Prof Nello Cristianini
The Shortcut: How Machines Became Intelligent Without Thinking in a Human Way
13 Dec 2023 Prof Mike Tipping
The Irresistible Rise of Machine Learning
28 Feb 2024 Prof Neill Campbell
No Free Lunches in Machine Learning
20 Mar 2024 Prof Özgür Şimşek
Reinforcement Learning and the Pursuit of Artificial Intelligence
17 Apr 2024 Dr Harish Tayyar Madabushi
Emergent Abilities of Language Models: Do they pose an existential threat?
8 May 2024 Prof Darren Cosker
Al for Human Sensing: Research, Productisation and Ethics
TBD Prof Mike Tipping
Bayesian Inference in Machine Learning: Indistinguishable from Magic?

Overview

Common Questions?

What questions do we have about ML?

- Can I use ML to solve x ?
- What does ML actually do?
- Isn't ML just the same as y ?
- Can I replace myself/my research team with ML?
- How much data do I need?
- Can I just use Deep Learning/Generative AI/ChatGPT?
- Surely Deep Learning/Generative AI/ChatGPT is all hype?
- Can any of this be used for science/engineering?
- Are all datasets equal or how to choose your data?
- Gotchas: What Machine Learning can and can't do for you.
- Average vs worst case Machine Learning
- Machine Learning and Causality
- Trade-offs in Machine Learning

Overview...

Overview

No Free Lunch

Uncertainty / Error Bars

Model Selection

Causality

Conclusions

No Free Lunch

Overview...

Overview

No Free Lunch

Uncertainty / Error Bars

Model Selection

Causality

Conclusions

Neural Network Playground:

- https://playground.tensorflow.org/

Machine Learning illustration

Machine Learning illustration

Machine Learning illustration

Machine Learning illustration

Machine Learning illustration

What if we use a probabilistic approach?

Machine Learning illustration

What if we use a probabilistic approach?

Test 1 Output (LB $=-35.536836968827984)$

Machine Learning illustration

What if we use a probabilistic approach?

Test 1 Output (LB $=-35.536836968827984$)

We need to consider properties of Machine Learning approaches

What happens between the dots?

What happens between the dots?

What happens between the dots?

What happens between the dots?

What happens between the dots?

What happens between the dots?

What happens between the dots?

What happens between the dots?

Ambiguity..

Ambiguity..

Ambiguity..

Ambiguity..

Ambiguity..

Ambiguity..

Average vs Worst Case..

Average vs Worst Case..

Average vs Worst Case..

Average vs Worst Case..

Average vs Worst Case..

Average vs Worst Case: Failure to model..

Average vs Worst Case: Explicitly accounting for imbalance..

No free lunch

No free lunch

No free lunch

No free lunch (more realistic)

Understanding Deep Learning

Excellent new text book from Simon Prince (visiting Prof in Bath for semester 1):
Understanding Deep Learning, Simon J.D. Prince, MIT Press
Final draft available on the website: https://udlbook.github.io/udlbook/

Uncertainty / Error Bars

Overview...

Overview

No Free Lunch

Uncertainty / Error Bars

Model Selection

Causality

Conclusions

Bayesian Machine Learning

- Bayes' Rule

$$
\text { Posterior Probability }(\text { after })=\frac{\text { Likelihood }(\text { of event }) \times \text { Prior Probability }(\text { before })}{\text { Evidence }}
$$

Example of Bayes' Rule..

- Consider a legal trial..

$p(A \mid B)$ means "probability of A being the case given that B occurs"

Example of Bayes' Rule..

- Consider a legal trial..

$p(A \mid B)$ means "probability of A being the case given that B occurs"

Monty Hall..

Monty Hall..

? ? ?

Monty Hall..

Monty Hall..

Monty Hall..

Monty Hall: How would we generate data (or simulate)?

```
door_with_car = pick_random({1, 2, 3})
door_with_goat = {1, 2, 3} - door_with_car
door_picked = pick_random({1, 2, 3})
if door_picked == door_with_car:
    door_to_open = pick_random(door_with_goat)
else:
        door_to_open = door_with_goat - door_picked
```

```
door_with_car = pick_random({1, 2, 3})
door_with_goat = {1, 2, 3} - door_with_car
door_picked = pick_random({1, 2, 3}) # 1/3 equal chance
if door_picked == door_with_car:
    door_to_open = pick_random(door_with_goat) # 1 times in 3
else:
    door_to_open = door_with_goat - door_picked # 2 times in 3
```

Consider Modelling and ML as a Generative Process

Data $\mathcal{D}=\{X, Y\}$, pairs of inputs $\left\{x_{n}\right\}$ and outputs $\left\{y_{n}\right\}$, and functions f
Average over functions to predict unknown output y^{*} for a new input x^{*} :

$$
p\left(y^{*} \mid x^{*}, \mathcal{D}\right)=\sum_{f} p\left(y^{*} \mid x^{*}, f\right) p(f \mid \mathcal{D})
$$

Prior over functions...

Combine prior with data...

Combine prior with data...

Combine prior with data...

Average over functions to predict...

Averaging over functions gives us (Epistemic) Uncertainty!

Model Selection

Overview...

Overview

No Free Lunch

Uncertainty / Error Bars

Model Selection

Causality

Conclusions

- How much data do we need?
- Might not be the right question..
- What can we actually say? The odds!

Model selection

- How much data do we need?
- Might not be the right question..
- What can we actually say? The odds!

Science (and Machine Learning) cannot prove things to be true via data

Science (and Machine Learning) cannot prove things to be true via data

we can only demonstrate that things are inconsistent with data

Stable Diffusion: "Drop cannonball and orange off the leaning tower of Pisa."

Stable Diffusion: "Drop cannonball and orange off the leaning tower of Pisa."

Apollo 15 Hammer-Feather Drop

576 K views 8 years ago
At the end of the last Apollo 15 moon walk, Commander David Scott (pictured above) performed a live demonstration for the television cameras. He held out a geologic hammer and a feather and dropped them at the same time. Because they were essentially in a vacuum, there w ...more

$$
\underbrace{p(w \mid \mathcal{D}, \mathcal{M}=m)}_{\text {Posterior under model }}=\frac{\overbrace{p(\mathcal{D} \mid \mathrm{w}, \mathcal{M}=m)}^{\text {Likelihood under model }} \times \overbrace{p(\mathrm{w}, \mathcal{M}=m)}^{\text {Prior }}}{\underbrace{p(\mathcal{D} \mid \mathcal{M}=m)}_{\text {Evidence for model }}}
$$

Data $\mathcal{D}=\{X, Y\}$, input/output pairs, and parameters w for Model $\mathcal{M}=m$

$$
\underbrace{p(\mathcal{M}=m \mid \mathcal{D})}_{\text {Posterior for model }}=\frac{\overbrace{p(\mathcal{D} \mid \mathcal{M}=m)}^{\text {Evidence for model }} \times \overbrace{p(\mathcal{M}=m)}^{\text {Prior for model }}}{\underbrace{p(\mathcal{D})}_{\text {Data }}}
$$

If prior over models is equal, we compare via the Evidence for the Model: $p(\mathcal{D} \mid \mathcal{M}=m)$

Model selection example

Fitting polynomial models to data under Gaussian noise, $\varepsilon_{n} \sim \mathcal{N}\left(0, \sigma^{2}\right)$:

$$
\begin{aligned}
& \text { Model } 1: y_{n}=a_{0}+a_{1} x_{n}+\varepsilon_{n} \\
& \text { Model } 2: y_{n}=a_{0}+a_{1} x_{n}+a_{2} x^{2}+\varepsilon_{n} \\
& \text { Model 3: } y_{n}=a_{0}+a_{1} x_{n}+a_{2} x^{2}+a_{3} x^{3}+\varepsilon_{n} \\
& \text { Model } 4: y_{n}=a_{0}+a_{1} x_{n}+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\varepsilon_{n} \\
& \text { Model } 5: y_{n}=a_{0}+a_{1} x_{n}+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+\varepsilon_{n}
\end{aligned}
$$

Parameters $w_{m}=\left[a_{0}, \ldots, a_{m}\right]$ for model m, where $m \in[1, \ldots, 5]$.

Model selection example

Model selection example (more noise)

Causality

Overview...

Overview

No Free Lunch

Uncertainty / Error Bars

Model Selection

Causality

Conclusions

Correlation is not Causation

Danger Batman..
The number of movies Nicolas Cage appeared in
correlates with
The number of MRI technicians in North Dakota

- -- The number of movies Nicolas Cage appeared in . Source: The Movie DB
- BLS estimate of magnetic resonance imaging technologists in North Dakota

Source: Bureau of Larbor Statistics
2012-2022, $r=0.871, r^{2}=0.759, p<0.01 \cdot$ tylervigen.com/spurious/correlation/6002
[https://tylervigen.com/spurious-correlations]

Danger Batman..
Bachelor's degrees awarded in Engineering
correlates with
Electricity generation in Cambodia

- Do we need causation?
- Is science not just correlation?

Importance simultaneously undervalued and overestimated?

Objectivity..

Crimes against data, Professor Andrew Gelman
NEM National Centre for Research Methods (NCRM) Subscribe

33,103 views 1 Sept 2016 Research Skills, Communication and Dissemination
Professor Andrew Gelman presented at the 7th ESRC Research Methods Festival, 5-7 July 2016, University of Bath. The Festival is organised every two years by the Professor Andrew Gelman presented at the 7.th ESRC Re
[Andrew Gelman: "Crimes against Data"]

Correlation vs Causation: What's the difference?

- Well we all know what the difference is..
- e.g. Atmospheric pressure and barometer needle reading

Formal definitions tricky but:

An object is the cause of another ..
"if the first object had not been, the second never had existed"
[David Hume, Enquiry Concerning Human Understanding, 1748]

- Introduces the idea of a counterfactual

Counterfactuals

- Real world:

$$
\text { ACTION } \rightarrow \text { OUTCOME }
$$

- Hypothetical world:

$$
\text { Counterfacutal Action } \rightarrow \text { Counterfactual Outcome }
$$

- Difference in outcome $=$ effect of the action!

So we are all done?

Problems with counterfactuals..

- We never get to observe the counterfactual :-(
- Could the counterfactual possibily occur?
- All the time inside our heads!
- What if I'd bought some tasty chocolates for Neill?
- Philosophical difficulties/objections..
- Can we approximate the counterfactual?
- Lots of the time in science \rightarrow the Randomised Control Trial (RCT)!
- Exciting question: what if we can't do RCT?
- Can we use ML to estimate the counterfactuals? Possibly!

Causal reasoning

 cannot be answered
by data alone we will need a model as well!

[Pearl and Mackensie 2017]

Illustration: Disease treatments

- Two disease treatments (surgical/non-surgival for kidney stones)

	Positive Outcome	Small Stones	Large Stones
Treatment A	$273 / 350=78 \%$	$81 / 87=93 \%$	$192 / 263=73 \%$
Treatment B	$289 / 350=83 \%$	$234 / 270=87 \%$	$55 / 80=69 \%$

-What's going on?

- Not a fair RCT: uneven allocation of patients

The stone size S is a confounder:

RCT would remove the confounder:

Illustration: Disease treatments

	Positive Outcome	Small Stones	Large Stones
Treatment A	$273 / 350=78 \%$	$81 / 87=93 \%$	$192 / 263=73 \%$
Treatment B	$289 / 350=83 \%$	$234 / 270=87 \%$	$55 / 80=69 \%$

The stone size S is a confounder:

RCT would remove the confounder:

$p(A \mid B)$ means "probability of A being the case given that B occurs" by observation alone

$$
p(Y \mid T)=\sum_{s} p(Y \mid S, T) p(T \mid S) p(S) / p(T)
$$

Probability of outcome Y given intervening with treatment T is $p(Y \mid \mathrm{do}(T))$

$$
p(Y \mid \mathrm{do}(T))=\sum_{s} p(Y, S \mid \mathrm{do}(T))=\sum_{s} p(Y \mid S, \mathrm{do}(T)) p(S)
$$

Illustration: Disease treatments

	Positive Outcome	Small Stones	Large Stones
Treatment A	$273 / 350=78 \%$	$81 / 87=93 \%$	$192 / 263=73 \%$
Treatment B	$289 / 350=83 \%$	$234 / 270=87 \%$	$55 / 80=69 \%$

The stone size S is a confounder:

RCT would remove the confounder:

$$
p(Y \mid \operatorname{do}(T))=\sum_{s} p(Y, S \mid \operatorname{do}(T))=\sum_{s} p(Y \mid S, \operatorname{do}(T)) p(S)
$$

$$
p(Y \mid \mathrm{do}(T=a))=\sum_{s} p(Y \mid S, \operatorname{do}(T=a)) p(S)=\frac{81}{87} \frac{357}{700}+\frac{192}{263} \frac{343}{700}=83 \%
$$

$$
p(Y \mid \mathrm{do}(T=b))=\sum_{s} p(Y \mid S, \mathrm{do}(T=b)) p(S)=78 \%
$$

Causality

- Statistical/Probabilistic reasoning alone cannot support causal inference
- Determining the joint probability distribution of variables says nothing about causation
- Causal Inference: promises to determine the necessary set of (non-data) assumptions sufficient to make a causal conclusion
[Thanks to Julian Faraway for Causal Illustrations]

Conclusions

Overview...

Overview

No Free Lunch

Uncertainty / Error Bars

Model Selection

Causality

Conclusions

Conclusions

Did we answer any of the questions?

- Can I use ML to solve x ?
- What does ML actually do?
- Isn't ML just the same as y ?
- Can I replace myself/my research team with ML?
- How much data do I need?
- Can I just use Deep Learning/Generative AI/ChatGPT?
- Surely Deep Learning/Generative AI/ChatGPT is all hype?
- Can any of this be used for science/engineering?

Conclusions

Need to think about what we really want..

- Computationally efficient look-up table
- e.g. have loads of data that spans the space
- Could use deep learning
- Need data efficiency / care about uncertainty
- e.g. clinical/safety applications
- Need a Bayesian method
- Want to analyse scientific results
- e.g. does my new model explain dark matter
- Need causal inference

Conclusions

Loads of gotchas..

- Availability (using the data you have not the data you need)
- Evaluation measure (is a human baseline sensible?)
- Ignore uncertainty/error bars
- Sample / dataset bias
- Bias / variance trade-off
- Haven't spoken about Decision Theory
- Lots to talk about regarding Causality
- "All models are wrong but some models are useful"

That's all folks..

Al Talks: AI \& ML Research Group, Department of Computer Science

11 Oct 2023 Prof Simon Prince
Understanding Deep Learning: The Technology Behind Modern AI
15 Nov 2023 Prof Nello Cristianini
The Shortcut: How Machines Became Intelligent Without Thinking in a Human Way
13 Dec 2023 Prof Mike Tipping
The Irresistible Rise of Machine Learning
28 Feb 2024 Prof Neill Campbell
No Free Lunches in Machine Learning
20 Mar 2024 Prof Özgür Şimşek
Reinforcement Learning and the Pursuit of Artificial Intelligence
17 Apr 2024 Dr Harish Tayyar Madabushi
Emergent Abilities of Language Models: Do they pose an existential threat?
8 May 2024 Prof Darren Cosker
Al for Human Sensing: Research, Productisation and Ethics
TBD Prof Mike Tipping
Bayesian Inference in Machine Learning: Indistinguishable from Magic?

